当前位置:9136范文网>教育范文>教案>倒数的认识教案

倒数的认识教案

时间:2025-10-25 12:42:41 教案 我要投稿

倒数的认识教案

  在教学工作者开展教学活动前,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?下面是小编收集整理的倒数的认识教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

倒数的认识教案

倒数的认识教案1

  教学内容:课本第19页的例题,完成”做一做“题目和练习五的第1~6题。

  教学目的:

  1.使学生理解倒数的意义。

  2.使学生掌握求一个数的倒数的方法。

  3.渗透辩证唯物主义关于事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义

  教学难点:正确找到一个数的倒数

  教学过程:

一、复习。

  1.把带分数化成假分数。

  2.把小数化成分数。

  0.71.50.3750.75

二、新授。

  1.引入。

  这节课我们要学习一个新知识--倒数。

  (板书课题:倒数的认识)

  2.倒数的意义。

  (1)口算下面各题。

  问:上面四个算式都是几个数相乘?

  计算的结果有什么特点?

  教师说明:具备以上特点的两个数叫做互为倒数,所以我们就说,上面每个算式中的两个数互为倒数。

  引导学生总结出倒数的定义。教师板书:

  乘积是1的两个数叫做互为倒数。

  (2)教师指出倒数的两个条件:

  ①两个数。

  ②这两个数的乘积是1。

  例如:和互为倒数,就是的倒数,的倒数是。

  (3)讨论:

  ①怎样的两个数互为倒数?

  ②一个数能叫做倒数吗?

  ③5是倒数这样的说法对吗?为什么?

  在学生讨论的基础上说明:倒数是对两个数来说的,它们是相互依存的.,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  (4)判断下列各组数是否互为倒数。

  (5)让学生举出几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。

  3.求一个数的倒数的方法。

  (1)引导学生观察板书出的互为倒数的两个数。

  问:互为倒数的两个数有什么特点?

  (2)引导学生找出:互为倒数的两个数的分子、分母是互相调换位置的。

  (3)讨论:

  ①2的倒数是多少?

  ②所有的自然数都有倒数吗?1的倒数是几?

  ③0有没有倒数?为什么?

  ④怎样求一个数的倒数?

  引导学生得出:

  1的倒数是1。0没有倒数。

  求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  (4)教学例题。

  写出和的倒数。

  第一小题:让学生讨论怎样写,教师板书:

  第二小题:让学生独立完成。

  让学生再说一说求倒数的方法。

 三、巩固练习。

  1.完成课本第23页的”做一做“题目。

  使学生明确:

  (1)求自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。

  (2)求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。

  2.完成练习五第1、2题

  四.全课小结。

  请学生说一说这节课学习了哪些内容。

  五.作业

  练习五第3~6题。

  教学反馈:

倒数的认识教案2

  课题:倒数的认识

  教学内容:p27倒数的认识,练习六全部习题。

  教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

  教学要求:使学生认识倒数的.概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

  教学过程:

  一、用汉字作比喻引入

  师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

  提一个开放性的问题:看到这个课题,你们想到了什么?

  (学生各抒己见)

  师生共同确定本节课的目标——研究倒数的意义、方法和用处。

  二、新知探索:

  研究倒数的意义

  师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

  学生自学后,问:有没有疑问?

  师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  学生自主举例,推敲方法:

  师:下面,请大家各自举例加以说明。

  学生先独立思考,再交流。

  (a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

  (b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

  (c、以“带分数”为例;带分数的倒数是真分数。)

  (d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e、以“整数”为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  讨论“0”、“1”的情况:

  1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

  三、反馈巩固:

  完成“练一练”。

  学生独立完成后,集体订正。重点问:“8”的倒数是几?

  练习六5(判断)

  补充判断:

  a、a是自然数,a的倒数是1/a。

倒数的认识教案3

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:从本质上理解倒数的`意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1。2 0

  学生独立完成,然后交流。

倒数的认识教案4

  教学目标:

  1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

  2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

  教学重点:理解倒数的意义,掌握求倒数的方法。

  教学难点 :熟练写出一个数的倒数。

  教具准备:多媒体课件。

  教学过程:

  一、情境导入。

  1、口算。

  5/12×2/5 = 15/7 ×7/5 = 11/8 ×8/13 =

  5/21×1/5 = 3/16 ×7/3 = 8/21 ×7/8 =

  先独立考虑,再指名口算订正。

  2、比一比,看谁算得又对又快:

  2/3×3/2 = 2×1/2 = 11/8 ×8/11 =

  1/10×10= 7/9×9/7 = 1/7×7=

  6/5×5/6 = 1/5×5 = 22/35×35/22 =

  同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

  【设计意图:通过口算,观察,考虑,激发了同学的学习兴趣和强烈的探究欲望,使同学获得积极的情感经验。】

  二、合作探索。

  1、小组合作交流:

  (1)和同桌说一说你的发现。

  (2)请你自身举出3个像上面这样的乘法式子。

  小组代表说说有什么发现。指名说说自身举出的例子。

  教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

  教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)

  教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

  阅读教材,进一步理解。

  教师:现在谁来说一说自身是怎样理解倒数的?

  同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

  出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

  【设计意图:关于倒数,局部同学已经有一定的知识准备,教学时采用小组合作交流、阅读课本的方法,让同学自主的体验学习知识的过程与获取知识的方法,提高同学的自主学习能力,同时,在合作交流的`过程中,培养同学的独立考虑和合作探究意识。】

  2、强化概念理解。

  你认为下面这两种说法是否正确?

  (1) 2/3 是倒数。

  (2) 得数是1的两个数互为倒数。

  同学先独立考虑,再口答,说明理由。

  【设计意图:一些同学通过自身的阅读和交流获得的知识往往是比较肤浅的,为让同学深刻的理解,需要教师的点拨,这样较好的完善同学认识,更利于同学掌握所学的知识。】

倒数的认识教案5

  本课题教时数:

  1本教时为第1教时备课日期9月17日

  教学目标:

  认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

  教学重难点:

  掌握求倒数的方法,能熟练得求一个数的倒数。

  教学准备:

  教学过程设计

  教学内容

  师生活动

  备注

  一、 教学倒数的意义

  二、教学求倒数的方法

  三、巩固练习

  四、课堂小结

  五、作业

  1、计算

  ×=

  ×=

  3×=

  问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

  追问:怎样的两个数互为倒数?为什么要说”互为?倒数?

  又问:谁能根据刚才的算式说一说,哪个数是哪个数的倒数?

  1、教学例题

  出示例题

  问:的倒数是哪个数?你则那样能够想到的?(板书格式)

  2、归纳方法

  观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的.位置发生了什么变化?

  问:你认为怎样就能很快的求出一个数的倒数?

  追问:0有倒数吗?为什么0没有倒数?

  指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

  除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

  3、教学“试一试”

  指出:分子是1的分数,它的倒数就是分母,整数的倒数就是这个整数做分母,分子是1。

  1、做练一练

  2、做练习六第2题

  3、做练习六第3题

  4、做练习六第4题

  5、做练习六第5题

  这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

  练习六6、7题

  说明:算式中两个数的积都是1,像这样乘积是1的两个数互为倒数。

  课后感受

  尝试学生自学自练的效果较好,学生的积极性也高。

倒数的认识教案6

  教学内容:六年级上册第二单元倒数的认识。

  教学目标:

  1、使学生理解倒数的意义,掌握求倒数的方法。

  2、提高学生观察、比较、、概括的能力。

  3、感悟“变通”的数学思想。

  教学重点:倒数的意义与求法。

  教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。

  教学程序:

  一、激趣导入,揭示课题。

  师:听到大家用如此洪亮的声音向我问好,我就知道,你们一定非常喜欢上——“数学课”。恩,激动+感动=我有信心上好数学课,你们有信心吗?不过,今天我倒是想先考大家一个语文知识方面的小知识。请看:出示:“杏”“呆”,看到这两个字,你发现了什么?

  (生:上下两部分调换了位置,变成了另一个字)

  师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!

  再出示“吴”,让学生得出“吞”。

  师总结:这是语文中的有趣的倒数现象,其实在数学中,也存在着这种奇妙的有趣的现象,今天这节课我们就来研究两个数之间的倒数关系,揭示课题:倒数的认识

  二、引导质疑,自主探究。

  1、引导质疑。

  师:同学们,看到“倒数”这个数学新名词,你想了解关于倒数的哪方面的知识?谁能告诉老师?

  生:什么是倒数?

  生:倒数是指一个数吗?

  生:倒数应该怎样表述?

  生:怎样求倒数?

  生:倒数是不是一定是分数?

  生:倒数有什么用?

  生:是不是每个数都有倒数?

  2、游戏比赛,理解倒数的意义。

  师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好? 好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。

  准备好了吗?开始……

  师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。

  (生读,师有选择的板书在黑板上。)

  师:这么短的时间内就能写出这么多乘积是1的`两个数,不错。

  师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

  生:无数个

  师:为什么能写这么多呢?你们有什么窍门吗?

  生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。

  3、揭示倒数的意义

  师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?

  生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。

  师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。

  师板书:乘积是1的两个数互为倒数

  你认为哪个词非常重要?你是如何理解“互为”的?生回答

  (小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  强调:(1)乘积必须是1。

  (2)只能是两个数。

  (3)倒数是表示两个数的关系,它不是一个数。

  4、小组探究求一个倒数的方法

  师:同学们知道了什么是倒数,你能求出一个数的倒数?

  请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。

  汇报自学成果。找学生板演。分类探索一个数的倒数的求法:分数、整数、带分数、小数。100、1、0 1、2、3 0.5、3.4、0.23

  小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。

  三、巩固练习,内化提高。

  1、判断题。

  2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。

  师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。

  交流发现:

  师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。

  (的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)

  师:是不是所有真分数的倒数都是假分数?

  (出示结论:所有真分数的倒数都是假分数)

  师:第二组(这组分数都是假分数,它们的倒数都是真分数。)

  师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)

  师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?

  (都是大于1的假分数。)

  所以——(卡片结论:大于1的假分数的倒数都是真分数。)

  师:第3组呢?(这组分数的倒数都是整数。)

  这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)

  师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)

  师:是不是所有整数的倒数都是分数单位?

  (出示:非零整数的倒数都是分数单位)

  师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

  四、总结反思,发展能力。

  师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

  师:你能用“我学会了--”来描述今天学到的知识吗?

  生:……

  五、学科融合

  今天的数学知识在同学们的共同努力下非常圆满地探索结束,在即将下课的一点点时间里,我还想和大家一起分享一点语文小知识,可以吗?

  接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

  后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

  在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。语文、数学学科存在着无穷的有趣的奥秘,除此之外的更多学科中也存在着更加神奇而丰富的奥秘,希望同学们不要分主课副科,认真学好每一门学科,好吗?

倒数的认识教案7

  教学目标:

  1.使学生理解倒数的意义。

  2.使学生掌握求一个数的倒数的方法。

  3.渗透辩证唯物主义关于事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的概念

  教学难点:会灵活求真、假分数、小数、整数、带分数的倒数。

  教学策略:

  1、因为学生已经有了前面分数乘法计算的基础,所以本节课教师可以完全放手让学生通过自学和足够的练习掌握倒数的概念以及求一个数的倒数的方法。

  2、教师应让学生明确倒数的两个条件:①两个数。②这两个数的乘积是1。乘积是1的两个数叫做互为倒数。并让学生讨论:

  ①怎样的两个数互为倒数?

  ②一个数能叫做倒数吗?

  ③5是倒数这样的说法对吗?为什么?

  3、在学生讨论的基础上说明:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。这个数可以是小数,分数和整数。

  然后让学生自己创作几组倒数,并对学生的回答让学生自己发表意见,用倒数的意义来检验所举的例子对不对。

  4、教学求一个数的倒数的`方法时要引导学生观察:互为倒数的两个数的分子、分母是互相调换位置的。并思考:

  ①所有的自然数都有倒数吗?1的倒数是几?

  ②0有没有倒数?为什么?

  ③怎样求一个数的倒数?

  引导学生得出:

  1的倒数是1,0没有倒数。求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  5、使学生明确:

  (1)自然数的倒数要先把它化成分母是1的假分数,再按调换分子、分母的方法来求倒数。

  (2)求带分数的倒数要先把它化成假分数,再按调换分子、分母的方法来求倒数。

  (3)求小数可以先把它化为分数再调换分子、分母的方法来求倒数。

倒数的认识教案8

  教学内容 教科书第28~29页例1、“做一做”及相关内容。

  教学目标

  1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

  2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

  3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

  教学重点 理解倒数的意义;求一个数的倒数。

  教学难点 理解“互为倒数”的含义。

  教学准备 教学课件、写算式的卡片。

  教学过程 具体内容 修订

  基本训练,强化巩固。

  (3分钟) 1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

  2.学生独立完成上面几组题,小组内检查并订正。

  创设情境,激趣导入。

  (2分钟) 请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

  提示目标,明确重点。

  (1分钟) 通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

  学生自学,教师巡视。

  (6分钟) 1. 观察这些算式,如果将它们分成两类,怎样分?

  2.通过观察发现算式的特点。

  展示成果,体验成功。

  (4分钟) 让学生说说乘积为1的算式有什么特点。

  学生讨论,教师点拨。

  (8分钟) 1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

  2.认识倒数。出示倒数的定义:乘积是1的'两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

  3.引导学生思考:互为倒数的两个数有什么特点?

  4.探讨求倒数方法。

  (1)出示例题,让学生说说哪两个数互为倒数。

  (2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

倒数的认识教案9

  教学内容:

  教材P24页中的例1、例2 ,完成练习六中的部分练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:

  概括倒数的意义,掌握求倒数的方法。

  教学难点:

  理解“互为”、“倒数”的含义以及0、1的倒数。

  教学方法:

  创设情境、启发诱导、合作交流、自学与讲授相结合等。

  课 型:新授课。

  教学过程:

  一、游戏激趣,揭示课题。

  1、理解“互为”的含义。

  朋友这个词对我们来说已经非常熟悉了,朋友,看到这个词你有什么想法说的?能告诉大家你最好的朋友是谁吗?指名说说自己的好朋友是谁?你能用一句话来表述你们之间的关系吗?(×××和我互为朋友,我是×××的朋友,×××也是我的朋友。板书:互为)另外找一名同学,你能再描述一下他

  们二人的关系吗?(略)那我们能说×××是朋友吗?(不能,因为朋友是相互的`,互相是朋友,互为朋友)同学们,在我们生活中有没有像朋友一样必须是一起出现,相互依存的知识呢?请举例——

  (父子关系、母女关系等)

  2、简单理解“倒”。

  师:同学们,你们今天的精神面貌真是好极了,老师有点惊呆了,板书“呆”,呆是一个上下结构的字,你们喜欢文字游戏吗?板书:“呆”的上下颠倒就成了“杏”,语文中的文字有这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么数学中的数也有这种规律吗?先来计算几道题目,计算之后相信自然会找到答案。

  板书:

  3

  8× 8

  3= 1 7

  15×15

  7=15×= 151112 ×12= 1

  二、新课教学。

  (一)引导质疑。

  学生算完后,观察并思考:这些题有什么共同的地方?

  生1:得数是1 生2:乘积是1

  除了乘积是一,因数还有什么特点(分子分母交换位置)

  师再举例如: 5/4×4/5 7/10×10/73×1/3

  进一步明确并(板书):乘积是1

  生3:都是两个数相乘. 〈 板书 〉:两个数

  1、 你们还能写出两个数乘积是1的算式吗?

  那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家30秒的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的把你写的念出来,和大家共同分享? (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。 如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)

  出示课题:乘积是1的两个数是什么关系呢?这就是我们这节课要学习的内容:倒数的认识 师指着板书说:我们称“乘积是1的两个数互为倒数”。

  师:那么倒数的相互关系在具体算式中怎么说呢,谁和谁互为倒数呢?

  比如4/5和5/4的乘积是1 ,我们就说4/5和5/4互为倒数。(师板书4/5和5/4互为倒数) 还可以说4/5的倒数是5/4;5/4的倒数是4/5。

  生:①模仿说 ②同桌互说

  2、理解意义:

  (1)在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?

  (互为”是指两个数的关系。 “互为”说明这两个数的关系是相互依存的。)

  倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  (2)以前我们学过这种两数间相互依存关系的知识吗?

  (3)2/5和5/2的积是1,我们就说??(生齐说)

  (4)7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同

  (5)辨析:下面的说法对吗?为什么?

  A:2/3 是倒数。( )

  B:得数为1的两个数互为倒数。( )

  C、

  D、12712和×43712乘积是1 ,所以32127和32712互为倒数。( ) ×=1,所以12、43、互为倒数。 ( )

  3、小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。

  (二) 探索求一个倒数的方法

  1、我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。 (分子和分母调换了位置。)

  根据这一特点你能写出一个数的倒数吗? 试一试!

  2、写出下列各数的倒数:3/5 7/2 5 13

  (1)先写3/5的倒数。教师查看学生书写的情况。

  (2)教师板书学生错误书写方法:3/5=5/3这样写对吗?为什么错了?正确的写法应该是怎样的呢?出示

  3/5 的倒数是( ) 7/2 的倒数是( )

  5 的倒数是( ) 13 的倒数是( )

  师生一起小结:求一个分数的倒数,只要把分子分母调换位置。(板书)

  师:那5的倒数是什么你是怎样想的?(把5看成是分母是1的分数,再把分子分母调换位置。 )师根据学生的回答及时板书。

  3、1和0的倒数

  师:那1 的倒数是几呢?为什么?

  0的倒数呢?

  师:为什么?

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后????(生齐:分母就为0了,而分母不可以为0。)

  4、师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  求一个数(0除外)的倒数,只要把分子和分母调换位置就行了。

  三、练习巩固。

  1、判断题:

  ①互为倒数的两个数,乘积是1。 ( )

  ②任何假分数的倒数是真分数。 ( )

  ③因为3×1/3=1,所以3是倒数。 ( )

  ④1的倒数是1。 ( )

  2、思考题:

  3/8×( )=( )×=( )×6=1

  3、找出马小虎的日记错误并改正。

  今天,我学习了一个新知识------倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  四、全课小结

  同学们,这节课大家通过自己的努力以及与别人的合作,认识了倒数,学会了求倒数的方法,大家的表现很精彩,老师由衷的祝贺你们。

  五、作业

  课本26页第4题。

  六、板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。

  求倒数的方法:分子分母交换位置,

  若是整数,先划成分母是1的分数。

  1的倒数还是1,0没有的倒数。

倒数的认识教案10

  0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)

  分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?

  1的倒数是多少?如何求的?

  练一练示范写的倒数:的倒数是,明确不能写成=。

  学生独立完成,集体核对。

  四、巩固练习

  练习十第1题

  学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法

  练习十第2题

  学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。

  练习十第3题

  学生独立填空后集体订正。

  练习十第4题

  写出每组数的倒数。说说有什么发现?

  第1组中都是真分数,倒数都是大于1的假分数。

  第2组中都是大于1的假分数,倒数都是真分数。

  第3组中都是一个分数的分数单位,倒数都是整数。

  第4组中都是非0的自然数,倒数都是几分之一。

  练习十第5题:

  学生独立完成。说说怎样求正方体的表面积和体积。

  练习十第6题

  学生独立列式解答后,辨析。

  两题中分数的不同意义:

  第一题中的表示两个数量间的倍比关系,要用乘法计算。

  第二题中的表示用去的'吨数,求还剩多少吨,要用减法计算。

  思考题

  学生小组讨论,指名交流。

  按钢管的长度分三种情况考虑:

  如果钢管的长度都是1米,那么两根钢管用去的一样多;

  如果钢管的长度小于1米,那么第一根用去的长度长一些;

  如果钢管的长度大于1米,那么第二根用去的长度长一些。

  五、课堂总结:

  今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?

倒数的认识教案11

  教学目标

  1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;

  2、通过互助活动,培养学生与人合作、与人交流的习惯;

  3、通过自行设计方案,培养学生自主探索和创新的意识。

  教学重难点

  理解倒数的`含义,掌握求倒数的方法。

  教学工具

  课件

  教学过程

  一、导入新课

  谈话导入课题。

  二、教学实施

  关于倒数同学们想知道些什么呢?学习倒数的含义

  1、观察教材24页的例1,归纳,总结倒数的含义。

  3.特殊数:0和1 (引导学生辩论0有没有倒数,1有没有倒数,是多少?)

  教师归纳板书:0没有倒数,1的倒数就是它本身。

  4.学习例2--求倒数的方法

  让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法

  5.反馈练习

  (1)完成教材24页的“做一做”,

  (2)完成练习六的第2、3题

  三、课堂练习

  找一找下列数中哪两个数互为倒数

  四、课堂小结

  学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。

  五、作业

  完成练习六的第1、4题

  课后习题

  完成练习六的第1、4题。

倒数的认识教案12

  教学内容:

  人教版六年级上册教材P24页中的例1、例2 ,完成练习六中的部分练习题。

  教学目标:

  1、知识与技能:

  (1)使学生理解倒数的意义,在众多的数中说出哪两个数互为倒数,学生能用完整、正确的语言表达倒数的意义。

  (2)掌握求倒数的方法,并能正确熟练的求出倒数。

  2、过程与方法:

  引导学生通过体验、观察、比较、交流、归纳等活动,理解倒数的意义,让学生经历体验知识的过程,自主总结出求倒数的方法。

  3、情感、态度与价值观:

  (1)通过合作交流培养学生学会与人合作,愿与人交流的习惯。

  (2)通过亲身参与探究活动,获得积极成功的情感体验。

  教学重点:理解倒数的含义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法。

  教法:创设情境、启发引导、自学与讲授相结合等。

  学法:联系生活实际、观察、比较、交流、归纳。

  教学准备:多媒体课件

  教学过程:

  一、创设情境,激趣导入。

  1、理解“互为”的含义。

  教师:同学们,听到“朋友”这个词我们心里暖洋洋的,谁能告诉大家你最好的朋友是谁吗?你能用一句话来表达你们之间的关系吗?如:×××是我的.朋友,我是×××的朋友,×××和我互为朋友。(另外找一名同学提问)你能再描述一下他们两人的关系吗?(回答略)那我们能说×××是朋友吗?不能,因为朋友是相互的,互相是朋友,他们的关系是相互依存的。那么在我们以前的数学学习中有没有遇到像这种关系相互依存的两个数呢?请举例。(因数与倍数、互质数等)

  2、理解“倒”。

  教师:同学们,刚才我提问时,有的同学吞吞吐吐的,谁知道“吞”字上下颠倒过来是什么字呢?现在我们来做一个填字游戏,看谁是火眼金睛,能很快找到规律并填出后面两组的另外一个字!(课件出示)

  吞—————————吴,甲——————————由

  杏—————————(呆),土————————— (干)

  指名口答。(说明原因。)

  教师:汉字真奇妙,有些汉字上下颠倒就有可能变成了另外一个汉字,那么数学中的数也有这种规律吗?学习了这节课,同学们就明白了。

  二、探究新知

  (一)引导质疑(教学例1)

  课件出示下列算式,让学生先计算,再观察,看看有什么规律。

  1、指名回答。

  2、归纳“倒数”的含义。

  乘积是1的两个数互为倒数。(课件出示)我们可以说的倒数是,的倒数是,和互为倒数。

  3、引出课题“倒数的认识”。

  4、小组合作交流。

  教师:大家认真分析倒数的含义,讨论:在这句话里,你认为那些字比较重要?你是怎么理解“互为”一词的?

  学生回答后老师引导理解 “乘积”、“ 1”、 “两个数”、 “ 互为”比较重要。“ 互为”是指两个数的关系。说明这两个数的关系就像朋友关系一样是相互依存的,而不能孤立地说某一个数是倒数。

  (二)探究求一个数倒数的方法。(教学例2)

  1、让学生根据已学知识独立解决。(注意6的倒数怎样求)

  2、归纳求一个数倒数的方法。

  提问:你是怎样求一个数的倒数的?

  学生汇报,课件反馈。

  学生总结出求倒数的方法:分子、分母调换位置。

  讨论交流:1和0有没有倒数,如果有,是多少?没有,为什么?

  得出结果:1的倒数是1 ,0没有倒数。(板书:1的倒数是1,0没有倒数。)

  三、巩固练习:

  1、(课件出示做一做)指名同学上前板演,发现问题后强调书写格式,互为倒数,并不是相等,所以两数之间不能用等号。

  2、延伸:

  (1)怎样求整数(0除外)的倒数?

  a 课件出示让学生求8的倒数。

  b让学生再说几个整数(0除外)的倒数。

  c总结方法:整数做分母,分子是1。

  (2)怎样求带分数的倒数?

  a 课件出示让学生求x的倒数。

  b引导学生解答。

  c总结方法:先把带分数化成假分数,然后分子分母调换位置。

  (3)怎样求小数的倒数?

  a课件出示让学生求0.75的倒数。

  b引导学生解答。

  c总结方法:先把小数化成分数,真分数分子分母调换位置。如果是带分数就按带分数求倒数的方法求。

  3、解决问题:找出马小虎的日记错误并改正。(课件出示)

  今天,我学习了一个新知识——倒数。我知道了互为倒数的两个数的乘积一定等于1,比如3×1/3=1,那么3是倒数,1/3是倒数,你知道了吗?我还知道了所有的数都有倒数(小数除外),比如整数2的倒数是1/2。我还学会了求任何数的倒数只要把分数的分子和分母交换位置就可以了。

  瞧!我学的怎么样!

  (让学生找出错误,并说明原因。并引导全体学生总结,加深印象。)

  四、全课小结

  这节课大家通过自己的努力以及与别人的合作,表现非常出色!老师真高兴!谁能告诉大家自己有哪些收获?

  五、布置作业:

  作业:课本第25页1 、 4题。

  六、板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。

  求倒数的方法:分子分母交换位置,若是整数(0除外),先划成分母是1的分数。

  1的倒数是1,0没有倒数。

倒数的认识教案13

  分析

  《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

  学情分析

  学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

  教学目标

  1、知道倒数的意义,会求一个数的倒数。

  2、经历倒数的意义这一概念的形式过程。

  3、培养学生观察、归纳、推理和概括的能力。

  4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

  教学重点和难点

  理解倒数的意义,会求一个数的倒数。

  教学过程

  教学环节

  教师活动

  预设学生行为

  设计意图

  一﹑创设活动情境

  倒,你对这个字怎么理解?

  那要是在这个字的后面加个数,就变成。。。倒数,你对这个词又是怎么理解?

  出示1/5×5,3/8×8/3,1/12×12,15/7×7/15这几组算式,开展小组活动,算一算,找一找,这几组算式有什么特点? 同学们发现了每组算式两个分数的分子与分母正好颠倒了位置, 并且它们的乘积是1.

  具有这种关系的数叫做互为倒数。谁来说一说什么样的两个数叫做互为倒数?出示倒数的'意义:乘积是1的两个数叫做互为倒数。

  学生说,就是把它倒过来,还做了个手势颠倒位置。

  学生有可能会说,每组中都是一个是真分数一个是假分数。

  还有的可能会说第一个分数的分母是第二个分数的分子第一个分数的分子是第二个分数的分母

  学生有可能只计算出结果。没发现这几组算式它们的分子,分母的位置是颠倒的。

  设疑,让学生产生求知的欲望。

  从两个数的关系入手研究,抓住了数学的本质,使学生体会到数学的研究是一脉相连的。

  让学生通过观察﹑计算发现这几组算式的乘积都是1.并且它们的分子分母的位置刚好颠倒。

  二 ﹑探究讨论,深入理解

  让学生说说对倒数意义的理解,在这个概念中你认为哪个词比较关键?

  学生有可能会说1/5是倒数。5/1也是倒数。并让学生知道这种说法是不正确的。

  乘积是1的两个数叫做互为倒数。只能说1/5和5/1互为倒数或1/5的倒数是5/1。但也有可能会说得很完整。

  让学生重点去理解“互为”是什么意思,加深对倒数的概念的理解。

  三﹑运用概念,探讨方法

  3/5的倒数是( ),

  8的倒数是( ),

  0.5的倒数是( )

  1. 3/5交换分子分母的位置,得5/3,所以3/5的倒数是5/3。

  2. 8可以写成8/1,所以8的倒数是1/8。

  3. 0.5也可以写成1/2,所以0.5的倒数是2.

  让学生归纳总结出找倒数的方法。

  四、补充概念,自我构建

  0和1 有没有倒数,如果有,它的倒数是几,如果没有,为什么?同学们试着研究。

  1的倒数是1 。

  0没有倒数。因为0不能做为分数的分母。

  加深对0没有倒数的理解;

  加深对倒数知识的理解;

  学生的思维逐步深刻,较好地实现了对于概念的建构,而且渗透了认真,严谨的学习态度。

  五、巩固练习,形成技能

  1.同桌互说倒数;

  2.判断。

  (1) 5/9是倒数,9/5也是倒数。( )

  (2)0的倒数还是0.( )

  (3)一个数的倒数一定比这个数小。( )。

  3.开放性训练。3/5 ×( )=( ) ×4/7=( ) ×( )

  学生会很活跃。

  加深对0没有倒数的理解;

  加深对倒数知识的理解;

  开放题让学生的思维得到更深层次的拓展。

  六、全课小结

  这节课你学会了什么?

  与教师一起总结

  培养学生的表达能力以及加深对倒数知识的理解。

  板书设计

  倒数的认识

  倒数的意义:乘积是1的两个数叫做互为倒数。

  求倒数的方法:1.分数——分子分母调换位置。

  2.整数或小数——先化成分数,再调换分子分母的位置。

  1的倒数是1, 0没有倒数。

倒数的认识教案14

  教学目标:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重点:

  理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法。

  教具准备:多媒体课件。

  教学过程

  一、旧知铺垫(课件出示)

  口算:

  × × 6× ×40

  ××3××80

  今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  课件出示知识目标:

  什么叫倒数?怎样理解“互为”?

  怎样求一个数的倒数?

  1有倒数吗?是什么?

  教学倒数的意义。

  学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  学生汇报研究的.结果:乘积是1的两个数互为倒数。

  提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  教学求倒数的方法。

  写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

  教学特例,深入理解

  1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  同桌互说倒数,教师巡视。

  三、当堂测评

  练习六第2题:

  辨析练习:练习六第3题“判断题”。

  开放性训练。

  3/5×()=()×4/7=()×5=1/3×()=1

  四、课堂总结

  你已经知道了关于“倒数”的哪些知识?

  你联想到什么?

  还想知道什么?

  设计意图

  倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

  教学后记

  第十一、十二课时:整理和复习

倒数的认识教案15

  学习目标:

  一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

  二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

  三、激情投入,挑战自我。

  教学重点:求一个数倒数的方法。

  教学难点:1和0倒数的问题。

  教学设计:

  离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)

  就先聊到这儿吧?好,上课!

  一、导入:

  同学们,在上数学课之前,老师想考你一个语文知识,怎么样?(出示杏和呆)看到这两个字,你发现了什么?

  生:上下两部分调换了位置,变成了另一个字

  师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

  师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?

  二、合作探究:

  (一)揭示倒数的意义

  1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

  请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

  师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

  师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。

  你认为哪些字或词比较重要?你是如何理解互为的?你能用举例子的方法来说明吗?(生答)

  师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说老师是你的朋友,你是老师的朋友,我们俩是双方面的。

  (二)小组探究求一个倒数的方法

  1.出示例题2课件:下面哪两个数互为倒数?

  师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

  出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

  提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

  师板书:求倒数的方法: 分数的分子、分母交换位置

  同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

  2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

  3.出示课件想一想。

  我的发现:1的倒数是(1),0(没有)倒数。

  师提问:(1)为什么1的倒数是1?

  生答:(因为11=1根据乘积是1的`两个数互为倒数,所以1的倒数是1)

  (2)为什么0没有倒数?

  生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

  4.探讨带分数、小数的倒数的求法

  师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。


它的倒数




求这一类数的倒数的方法





带分数




2






小数




0.2






1.75






  你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

  (师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

  当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

  发现1:带分数的倒数都(小于)本身;

  发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。

  发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

  (三)学以致用:

  师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

  1.想不想检验一下自己学的怎么样?

  请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

  2.(课件出示)请你以打手势的形式告诉老师你的答案。

  (四)全课总结

  今天学习了什么?我们一起回顾总结出来好吗?

  《倒数的认识》教学反思:

  本节课一开始创设让学生找朋友的情境,通过此活动帮助学生理解互为的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

  本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。

  倒数的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对倒数的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

  在课后的巩固练习中,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

  最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

【倒数的认识教案】相关文章:

认识倒数教案10-11

《倒数的认识》说课稿10-06

倒数的认识说课稿06-26

《倒数的认识》教学设计08-11

倒数的认识教学设计07-12

倒数的认识教学反思10-04

《倒数的认识》教学反思07-04

认识倒数教学反思06-21

倒数的认识教学设计11-10