当前位置:9136范文网>教育范文>教学设计>《平行四边形的面积》教学设计

《平行四边形的面积》教学设计

时间:2024-11-16 18:43:05 教学设计 我要投稿

《平行四边形的面积》教学设计优选[14篇]

  作为一名无私奉献的老师,就难以避免地要准备教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。教学设计应该怎么写呢?以下是小编整理的《平行四边形的面积》教学设计,欢迎大家分享。

《平行四边形的面积》教学设计优选[14篇]

  《平行四边形的面积》教学设计 篇1

  教学目标:

  1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。

  2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。

  重点、难点:

  教学重点:掌握平行四边形面积计算公式。

  教学难点:平行四边形面积计算公式的推导过程。

  教学准备:

  教具准备:多媒体课件,平行四边形的图形。

  学具准备:剪刀、平行四边形纸片。

  教学过程:

  一、情境导入

  1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。

  2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的西头,可他家的地却在村子的东头。太不方便了,怎么办呢?

  通过交换土地的想法揭示课题《平行四边形的面积》

  【设计意图:教师选取孙悟空和猪八戒拼图的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。】

  二、自主学习

  1.剪一剪,拼一拼。

  师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)

  2.探讨联系

  师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?

  (1)学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。

  (2)小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的.底相等,长方形的宽与原来平行四边形的高相等。

  (3)全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。

  3.推导公式

  师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)

  师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

  【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】

  三、巩固练习

  师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。

  【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】

  四、课堂小结

  这节课你有什么收获?

  【设计意图:使学生回顾、梳理本节课的学习内容。】

  《平行四边形的面积》教学设计 篇2

  教学内容:小学数学(人教新课标实验版)五年级上册第79~81页。

  教学目的:

  1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学重点:平行四边形的面积的计算

  教学难点:平行四边形的面积公式的推导过程

  教具准备:课件、方格纸、平行四边形若干个

  学具准备:平行四边形四个,三角板,直尺,剪刀。

  教学过程:

  一、课件出示单元主题图

  (1),引入课题

  师:(1)从图中你发现了哪些图形?

  (2)你们会计算它们的面积吗?

  (3)从今天开始我们就来学习第5单元多边形的面积的计算,(板第5单元多边形的面积)在这个单元中包括平行四边形,三角形,梯形,及组合图形面积的计算,这节课我们先来学习平行四边形的面积的计算。(板平行四边形的面积)

  师:下面我们就以这两个花坛为例。课件出示(2)

  二:通过数方格图,初步感知

  (1)你觉得这两个花坛哪个更大一些?

  生1:

  (2)怎样比较两个花坛的大小?

  (3)你会计算的平行四边形面积吗?

  (4)用什么样的方法能计算出它的面积?

  (5)下面就用数方格的方法在小组内来试一试。课件出示(3)

  (6)最后你发现了什么?

  通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形的面积等于它的`底乘高;这个长方形的面积等于它的长乘宽。

  (7)根据你的发现你还能想到什么?

  三、学生动手操作,自主探究

  用数方格的方法可以得到平行四边形的面积。如果要我们计算我们学校的占地面积,这样就比较麻烦。下面我们不用数方格的方法还有没有更简便的方法呢?课件出示(4)

  自主探究,推导公式

  (组内学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。)

  请三个小组的学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)

  教师用课件(5)(6)演示剪——平移——拼的过程。

  我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。出示讨论题。(7)

  (1)拼出的长方形和原来的平行四边形比,面积变了没有?

  (2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  (3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,课件演示(8)

  学生讨论板书出平行四边形面积公式:

  长 方 形 面 积 === 长 × 宽

  ‖ ‖ ‖

  平行四边形面积 === 底 × 高

  一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。

  板书:s==a×h==a·h===ah

  师:刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边

  四:巩固新知,反馈练习。

  1、课件出示例1(9),读题理解题意。学生试做,交流作法和结果。

  2、实践应用(10)

  3、思维拓展

  (1)出示课件 (11),引导学生思考

  (2)组织学生讨论

  (3)课件演示等底等高的两个平行四边形的面积相等

  五:课堂总结:通过今天的学习,你有那些收获?还有那些遗憾的地方?

  评析:

  王彬老师这一节课的教学是在64名学生的大班中实施的,可后,听课老师的一致评价是学生学得扎实,理解的透彻,教师多媒体课件展示效果好。也曾看过上海潘晓明老师执教此课的案例,比较之后,有下列思考:

  一:大班教学中的放与收的问题

  新课程的数学教学提出国成型目标这一概念,即让学生体验知识产生、形成的过程,强调学生自主的思考与实践。在潘晓明老师的课例中,学生直接拿出纸上印好的平行四边形,然后自己动脑筋、想办法计算出纸上平行四边形的面积,教师参与学生活动,并适时启发、引导。很显然,这样的课堂是开放的,对于每一个学生也确实是一种挑战,但潘晓明老师执教的班级只有30名学生,对于64人的大班,这样开放的问题会导致一些学生无从下手,教师的指导也必然照顾不全,再加一节课的时间有限,所以,“放”到怎样的程度,如何能照顾到全体,王彬老师的课堂设计给我们做了一个很好的示范:从生活情境中一比大小引入,在学生已有的数方格的经验中先让学生感知平行四边形的面积与底河搞有关系,为下一步的学习进行铺垫,在进一步的探索中,学生指向明显,很快通过剪拼的方法将平行四边形转化成长方形。在此过程中,有教师的引导,也有学生的独立探索与思考,很好的把握了大班教学中放与收的关系。

  二、多媒体课件演示的时效性问题

  本课的多媒体课件使用避免了当先许多老师课件使用走形式,无时效的弊病,体现了以下特点:

  1、现实情境的真实感让学生体会到数学学习的价值;

  2、生动形象的过程演示,使学生充分理解算理;

  3、丰富多彩的课后练习,拓展了学生的思路,开阔了学生的思维。

  一节好课的标准很多,如何在一节课中既落实双基,又培养能力、发展智力,同时情感、态度、价值观也得到提升,这是我们每一位教师追求的目标,可在一节课的教学中,我们很难将这些目标全部落实,但我们可以以某一方面为着眼点。王彬老师的这节课或许能给与大家更多的启发。

  《平行四边形的面积》教学设计 篇3

  课型:新授

  学情分析:

  本班是典型的农村合并班级,在第一阶段的学习的是在地方村小,基础参差不齐,这为开展课堂活动带来不小阻力;其次,班上同学普遍不自信,害羞腼腆,课堂参与度不高;针对这两点,我认为要更深入地了解学生的个性,和学生情真意切地交流,沟通,而不是高高在上盛气凌人,在课堂上更注重学生的心理特点和思想活动,达到一起活动,一起学习,一起游戏,缩短距离感,打造课堂上轻松愉快的氛围,提高学生自信,大胆学习。

  教学内容:

  人教版数学五年级上册86页至87页

  教学目标:

  1使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力

  教学重点:

  理解公式并正确计算平行四边形的面积

  教学难点:

  理解平行四边形面积公式的推导过程

  教具使用:

  多媒体课件、长方形、平行四边形、长方形框架

  教学过程:

  (一)复习旧知

  师:在之前的学习中,我们遇见了不少的平面图形呢,比如:……在这些平面图形当中,我们能求出面积的有哪些?谁能来说说看。

  生:长方形S=ab

  生:正方形S=aa或a的平方

  (二)故事导入

  师:说到平行四边形和长方形,老师突然想起一个有趣的故事,相信在你们也都听过,叫《两兄弟分家》,你们有谁还记得吗?

  对,李老汉因为年纪大了,决定将家里的两块耕地分给自己的两个儿子,不过这两块地一块是平行四边形的,另一块是长方形的',可是大哥分完以后不开心了,便跑去问父亲:“您是不是更喜欢弟弟呀,弟弟的平行四边形的地明显比我的长方形的地要大很多”。可李老汉却笑呵呵的说:“我对你们的爱都是一样的,你们的地面积也都是一样的呢”。可大哥却依旧很不解。

  咱们也来看看这两块地,大家说说。你觉得那块地大,哪块的面积小呢?

  师:在解决数学问题的时候光用眼睛看来判断能行吗?咱们得拿出真凭实据来。既然是比较面积的大小。 咱们就把他们的面积求出来,比一比。

  生:长方形的面积=长x宽

  师:那平行四边形的面积应该怎样求呢?

  导出课题——平形四边形的面积。

  (三)探究新知

  问题:回忆一下,我们是用什么方法得出长方形的面积的计算公式的?(数格子)今天咱们也用数格子的方法来研究平行四边形的面积。

  1.让学生拿出课前发的学具。(如图)

  师:数完之后你发现了什么?

  *(两个图形的面积相等,平行四边形的底和高与长方形的长和宽分别相等)

  2.咱们试着猜想,平行四边形的面积计算方法。

  教师出示:一张长10cm,宽5cm的长方形纸片,与一张地10cm高5cm的纸片,让学生自主探究平行四边形的面积。

  根据学生给出的答案进行有效的更近。

  (1)排除部分同学将面积公式与周长公式混淆的情况;

  (2)两邻边相乘

  出示平行四边形框架,根据平行四边形具有易变性的特质,拉动平行四边形框架,邻边未发生改变,但是面积在不断地变大,变小。所以平行四边形的面积与邻边的长度无关;

  (3)底乘高

  由(2)将同学们的注意力引申到底和高上来,不断拉动平形四边行,面积发生改变的同时,平行四边形的高在发生改变。

  质疑:平行四边形的面积到底与底和高存在怎样的联系呢?

  3.布置小组实验并提出实验要求

  (1)沿平行四边形的任意一条高将其剪开,试着拼成一个长方形;

  (2)观察拼成的长方形和原来的平行四边形,你有什么发现?

  学生汇报:

  长方形平行四边形

  面积=面积

  宽=高

  长=底

  根据长方形的面积公式推导出平行四边形的面积=底x高(S=ah)

  4.巩固延伸

  1.一个停车位是平行四边形,它的底长5m,高2.5m。它的面积是多少?

  讨论:

  2.比较下列平行四边形的面积大小

  等底等高的平行四边形面积相等。

  课堂小结

  回顾一下,今天我们是如何推导出了平行四边形的面积,还有什么问题吗?

  布置作业:

  作业:第89页练习十九,第1题、第3题、第4题。

  板书设计:

  平行四边形的面积

  S长方形=长x宽

  S平行四边形=底x高

  S = a h

  《平行四边形的面积》教学设计 篇4

  教学内容:

  人教版义务教育课程标准实验教科书五年级上册

  教学目标:

  1、知识目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、能力目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗转化的思想方法。

  3、情感目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

  教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:平行四边形面积公式的推导方法—转化与等积变形。

  教具准备:课件,平行四边形纸片,剪刀

  教学过程:

  (一)创设情景,引出课题

  1、小故事:阿凡提买毛毯。故事是这样的:一天聪明的阿凡提去买毛毯,同学们看一下这两条毛毯是什么形状的?这时迎面走来了非常小气、贪婪的巴依老爷一眼就看中了这两条毛毯。阿凡提突然计上心来,就对巴依老爷说:“如果你选出比较大的一块来,我就把2块都送给你,如果选错,你就把欠长工的钱都还给他们。”巴依老爷上去就抓住了长方形的那块。同学们认为那一块大?(生猜测)要想知道哪一块大,求出它们的什么就行了。长方形的面积会求那平行四边形的面积呢?

  2、既然我们已经知道了如何计算长方形的面积,那平行四边形的面积如何计算呢?今天这节课我们一起就一起来研究平行四边形的面积。(板书课题)

  (二)动手实践,探究新知

  1、复习两图形

  师:在比较它们的面积之前我们先回想一下:你都知道长方形和平行四边形的什么知道?(回忆长方形的面积、平行四边形的底和高)

  2、数方格比较两个图形面积的大小。

  师:还记得以前我们是如何学习长方形的面积的吗?那下面我们把这两个图形都放到方格纸上比一比。

  (1)出示图形并提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积并填写课本80页表格。

  (3)反馈汇报数的结果。(用数方格的方法得到的两个图形的面积是一样大的)

  (4)提出问题:如果平行四边形很大,用数方格的方法很麻烦,能不能开动脑筋找到一种简便的方法来计算平行四边形的面积?

  (5)让学生观察这两个图形,并提出思考问题:如果我们把平行四边形转化成过去学过的哪个图形,就可以根据已学过的图形的面积来计算出它的面积了?

  2.运用剪拼法,验证猜想。

  (1)提出要求:利用手中的工具,动手剪一剪,拼一拼,想办法把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

  (2)学生分组操作,教师巡视指导。

  (3)学生展示不同的把平行四边形变成长方形的方法,每组派代表去讲台上演示不同的方法,将自己的成果展示在黑板上。让学生注意观察并思考以下问题:

  a.为什么要沿高剪开?

  b.拼成的长方形和原来的平行四边形相比,他们的面积变了吗?

  c.拼成的长方形的长与原来平行四边形的底有什么关系?

  d.拼成的长方形的宽与原来平行四边形的高有什么关系?

  (4)思考的同时,教师利用课件演示平行四边形转化成长方形的过程。

  (5)交流反馈,引导学生得出:

  A. 拼成的长方形和原来的平行四边形相比形状变了,面积没变。

  B.拼成的长方形的长等于原来平行四边形的底。

  C.拼成的长方形的'宽等于原来平行四边形的高。

  (6)根据长方形的面积公式s=ab,进而得出平行四边形面积公式:平行四边的面积=底x高,用字母表示为S=axh

  (7)活动小结:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积。因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示为S=ah。

  (8)同桌之间互相说一说剪拼过程。

  (三)分层训练,理解内化

  (1)基础练习:课本81页例1

  (2)综合练习:你能口算出这些平行四边形的面积吗?

  (3)扩展练习:比较四个平行四边形的面积。

  (四)课堂小结,巩固新知

  小结:这节课我们学习了什么?你学会了什么?

  板书设计:

  平行四边形的面积

  长方形面积 = 长 × 宽

  平行四边形的面积 = 底 × 高

  S = a h

  《平行四边形的面积》教学设计 篇5

  教学目标:

  1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

  2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思想方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点和难点:

  教学重点掌握平行四边形面积计算的公式,能正确计算平行四边形的面积。

  教学难点平行四边形面积计算公式的推导过程。

  教学重难点:面积公式的推导。

  教具、学具准备:

  1. 教学课件。

  2.剪两个底40厘米,高30厘米的平行四边形,供演示用。

  3.每个学生准备一个平行四边形(可以用教科书第137页的图剪下来贴在厚纸上)和一把剪刀。

  教学过程:

  一、复习

  1.幻灯出示各种图形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?

  2.让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

  教师:今天我们就来学习平行四边形面积的计算方法。

  板书课题:平行四边形的面积

  二、新课

  1.用数方格的.方法求平行四边形的面积。

  (l)指导学生数方格。

  (2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

  (3)比较平行四边形和长方形。

  提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?

  启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  (4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?

  2.用实验的方法推导平行四边形面积公式。

  (1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?(教师先要求学生要沿着哪条哪条高剪,再让学生动手.)

  (2)教师示范把平行四边形转化成长方形的过程。

  刚才我发现有的同学把平行四边形转化成长方形时,把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右平行移动。

  ③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合.(教师巡视指导。)

  (3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较。)

  ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的长、宽分别和原来的平行四边形的底、高相等。它的面积和原来的平行四边形的面积也相等。

  (4)引导学生总结平行四边形面积的计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高)

  (5)教学用字母表示平行四边形的面积公式。

  板书:S=a×h,告知S和h的读音。

  教师说明:在含有字母的式子里,字母和字母中间的乘号可以记作“.”,写成ah,代表乘号的“.”也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah。

  (6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。

  3.应用总结出的面积公式计算平行四边形的面积。

  (1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。

  (2)完成教科书第66页“做一做”中的第l题和第2题。做完后共同订正。

  (3)让学生拿出自己准备的平行四边形,量一量它的底和高是多少厘米,再求出它的面积。

  三、巩固练习

  做练习十六的第1题。

  四、小结

  这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?

  五、作业;练习十六

  第2题和第3题。

  《平行四边形的面积》教学设计 篇6

  教学内容:人教版五年级上册第六单元第一课时P87-88

  教学目标 :

  1.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。

  3.感受数学在生活中的作用,体验学习数学的乐趣。

  教学重点和难点

  教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。

  教学难点:使学生理解平行四边形面积计算公式的推导过程。

  教具学具:课件、一个平行四边形、剪刀

  教学过程

  一、创设情境,生成问题

  1.故事导入

  2.从平行四边形的地中引出课题“平行四边形的面积”。

  二、探索交流,解决问题

  1.用数方格的方法计算面积。

  (1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)

  (2)学生完成,汇报结果。

  (3)观察表格的数据,你发现了什么?

  通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的.宽相等;这个平行四边形面积等于长方形的面积。

  2.推导平行四边形面积计算公式。

  (1)提问:如果不数方格,能不能计算平行四边形的面积呢?

  (2)引导解决方法:把平行四边形转化成长方形

  (3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平

  行四边形和剪刀进行剪拼,教师巡视指导。

  (4)学生汇报演示剪拼的过程及结果。

  (5)教师用课件演示剪—平移—拼的过程。

  (6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  (7)出示讨论题,小组讨论。

  (8)小组汇报交流,教师归纳:

  把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的宽与平行四边形的高相等,

  因为 长方形的面积=长×宽,

  所以 平行四边形的面积=底×高。

  3.教师指出如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式用字母怎样表示?

  S=ah

  三、巩固应用,分层提高

  1.教学例1

  例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?

  (1)读题并理解题意。

  (2)学生试做,交流做法和结果。

  S=ah=6×4=24(m2),

  答:它的面积是24平方米。

  2.练一练

  (1)一个停车位是平行四边形,它的底长5米,高2.5米。它的面积是多少?

  (2)判断题

  (3)选择题

  (4)求平行四边形的面积

  (5)扩展题

  四、回顾整理,反思提升

  1.通过这节课的学习,你有哪些收获?

  2.用本课所学的知识证明老财主没有偏心。

  五、板书

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  《平行四边形的面积》教学设计 篇7

  教材分析:

  本节课是在学生对平行四边形有了初步认识,学习了长方形、正方形面积计算的基础上进行教学的。平行四边形面积公式的推导方法的掌握,对后面三角形、梯形面积公式的学习具有重要的作用。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。本课时内容在教科书的第96至97页,包括剪拼图形、总结公式、试一试、练一练和问题讨论五个环节,这部分知识的学习、运用会为学生学习后面的三角形,梯形等平面图形的面积计算奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。

  学情分析:

  五年级的学生已经具有了自主学习、迁移推理的能力,在学平行四边形面积计算之前,学生已经了解了平行四边形各部分的名称及特点,掌握了长方形、正方形面积的计算公式。

  设计理念:

  根据教学内容,因材施教制定了教学思路:创设情境——指导探究——发现规律——实践应用。人人参与教学活动,动脑、动手、动口,达到理解和运用公式的目的。在解决问题中真切感受到数学知识来源于生活,又服务于生活。

  教学目标:

  1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  3、培养学生学习数学的兴趣及积极参与、团结协作的精神。

  教学重点:

  探究平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  平行四边形面积公式的推导过程。

  教具准备:

  课件、方格纸、剪刀、长方形、平行四边形。

  教学过程:

  一、情景引入,激趣导课

  1、情景引入(出示课件)

  2、从平行四边形的花坛中引出“平行四边形的面积”。

  师:这两个花坛哪一个大?(生自由说)

  我们已经知道长方形的面积是怎样算,平行四边形的面积又怎样算呢?

  3、揭题:平行四边形的面积(板书课题)

  二、动手操作,探究新知

  1、联想、猜测。(用数格子的方法)

  长方形的面积与它的长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?

  2、归纳意见,提出验证。(用剪、拼的方法)

  能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。

  ⑴小组合作,动手操作。

  ⑵演示操作过程。(课件演示)

  同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。

  ⑶观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开?

  长方形有四个直角,只有沿高剪开,拼时才能出现直角。

  ⑷讨论:拼出的长方形和原来的平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。

  ①拼出的长方形和原来的平行四边形比,什么变了,什么没变?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?

  ⑸讨论推导出平行四边形面积公式:

  长方形的`面积=长×宽

  平行四边形的面积=底×高

  3、演示过程,强化结果。

  大家刚才在操作中沿平行四边形任意几条高剪开、平移、拼都把一个平行四边形转化成一个长方形。请同学们再观察一遍(多媒体演示),一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。(刚才有同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?邻边长度没变,面积变了,所以平行四边形面积不等于两邻边的积)

  从而也验证了大家前面猜想的底乘高等于平行四边形的面积是正确的,在学习中我们采用了先猜想,再转化,最后验证等学习方法,这些方法在学习中我们经常用到。

  4、用字母表示公式。

  师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积可以用字母什么表示?字母中间乘号可以省略。S=ah

  师:要求平行四边形的面积,必须知道什么?

  (通过大家共同的努力,推导出了平行四边形面积公式,下面让我们走进阳光小区,去解决一些实际问题。)

  5、利用公式解决例1。

  例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?

  两人板演,其余做在练习本上。S=ah=6×4=24(m2),6×4=24(m2)

  [评析:根据刚才对平行四边形面积计算方法的初步感知,先让学生猜测平行四边形的面积怎样算,然后把平行四边形转化成长方形,利用长方形面积推导出平行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。]

  三、反馈练习,发展思维。

  课件练习

  四、课堂总结

  今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?

  板书设计:

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  《平行四边形的面积》教学设计 篇8

  教学目标:

  1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。

  2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

  3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。(现在目标应该写四基四能。)

  教学重点:

  掌握平行四边形的面积计算公式,能准确解决实际问题。

  教学难点:

  理解平行四边形面积计算公式的推导方法与过程。

  教学准备:

  两张格子纸,一张白纸,可变形的平行四边形

  教学过程:

  一、揭示课题:平行四边形(展示课件课本情景图)

  师:同学们在校门口进进出出,有没有发现在这里就有许多我们学过的图形。说说你都发现了那些图形?

  生:平行四边形、长方形、圆形......

  师:那么我们发现生活中处处有图形,,那么学校里面想对这两块花坛进行规划,在规划之前想比较他们的大小,比较他们的大小其实就是比较他们的什么?(展示单独两个花坛图片)

  生:面积(学生回答面积后,马上追问,什么是面积?)

  师:什么是面积?

  生:面积就是一个图形所占平面的大小。

  师:那么我们学过那些图形的面积?

  生:长方形和正方形。

  师:它们的面积怎么求?

  生1:长方形的面积=长×宽

  生2:正方形的面积=边长×边长

  师板书:长方形的面积=长×宽

  师:长方形的面积为什么等于长×宽?咱们是怎样求出来的?

  (设计意图:引导学生回忆,数方格计算面积的方法,也就是数小方格的简便运算)

  师:长方形的面积我们已经学过,那么平行四边形的面积就是我们这节课要探究的。(板书课题)

  二、新授

  师:两个花坛不能直接看出他们面积的大小,但是如果老师把两个花坛的图形搬到方格纸中,能不能看出两个花坛哪个花坛的面积可以算出来?(展示方格纸)

  生:能

  师:怎么看出来?

  生1:长方形的面积可以直接数格子数出来24个格子,是24平方米。

  生2:长方形的长是6米,宽是4米,利用长方形面积公式:长方形的面积=长×宽=6×4=24。

  师:长方形的面积可以直接数出来,那么平行四边形的`面积能不能用数方格的方法,直接数出它的面积呢!

  生操作。(拿出1号方格纸,不满一格的都按照半格计算)

  师:看看同学们都是怎么数的?

  生:20个满格,8个半格,一共24个格,面积是24平方米。

  师:平行四边形的面积利用数方格的方法是不是很麻烦?还不是很精确。我们能不能找出一个更好的方法呢?

  (引导学生发现计算是最好的方法。设计意图:引导学生发现探索面积公式的必要性。)

  猜测一下:平行四边形的面积可能与什么有关?

  生:平行四边形的面积=底×高(猜测一下,平行四边的面积可能与什么有关?学生回答后,马上画出平行四边形的底和高,并测量。)

  师:平行四边形的面积真的是底×高吗?验证一下。(拿出1号方格纸)找到平行四边形的底是多少?高是是多少?

  生1:底是6米。

  生2:高是4米。

  生3:6×4=24,所以平行四边形的面积是底×高。

  师:那么所有的平行四边形的面积都是底×高?数方格的面积是估算出来的,那么我们可以可以精确的算出平行四边形的面积?

  (拿出2号方格纸)在方格纸上画一个平行四边形,并计算出平行四边形的面积。

  生操作

  出示学生的作品,介绍一下是怎么想的。

  生1:用拼的方法,拼成一个长方形,再数出面积。

  生2:也是拼,剪掉上面的拼下面,剪下面拼上面。

  师:刚才他们都用到了一个动词,是什么?(生:拼)

  师板书:拼

  生4:整块简拼,移到右边。

  师:拼的过程其实也是我们数学当中的平移的过程。

  师:不管是数格子,还是拼剪的方法,都算出了平行四边形的面积。

  3、出示3号白纸,学生自己画一个平行四边形

  学生操作,小组讨论。

  (此环节是本节课的重点和难点,应该放手让学生小组合作,讨论,并且汇报)

  展示学生作品

  师:这样的平行四边形要怎样计算面积呢?还能数方格吗?

  小组讨论,学生操作剪一剪,拼一拼。

  生1:不沿高剪得

  生2:先沿平行四边形的高剪开,把剪下来的三角形向右平移,拼在图形的右下方,把图形变成一个长方形,转化成长方形就能计算面积了。

  师板书:长方形的面积=长×宽。

  师:看来平行四边形的面积和长方形的面积有关系,到底有什么关系呢?

  师提醒:观察原来的平行四边形和转化后的长方形,发现它们之间有哪些等量关系?

  学生讨论

  生1:平行四边形拼成后底成了长方形的长,高成了长方形的宽,长方形的面积是长×宽,所以平行四边形的面积=底×高。

  生2:这两个图形的面积是相等的。

  师总结:验证成功,平行四边形的面积=底×高

  (汇报时引导学生用完善的语言表达,把平行四边形沿着一条高剪开,把剪下的部分平移到平行四边形的另一侧,拼成一个长方形,拼成的长方形与原来的平行四边形面积相等,长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高,因为长方形面积等于长乘宽,所以平行四边形面积等于底乘高。学生边汇报,教师边板书)

  师板书:平行四边形的面积=底×高

  3、如果用字母S表示面积,a表示底,h表示高

  你会用字母表示平行四边形的面积吗?

  生:S=a×h

  利用公式来计算

  出示例题1(练习题的设计应先出带图的,再出文字的,体现直观到抽象。)89页第二题可以打在幻灯片上,为了节约时间可以只列式不计算,目的是练熟公式。

  拓展练习:

  (1)选择题:平行四边形的底是5米,高是4米,它的面积是()

  A 20米B 20平方米C 18米D 18平方米

  (2)出示图形(强调高和底是相对的)

  (3)画出一个底是3cm,高的5cm的平行四边形。

  师总结:等底等高的平行四边形面积相等,但是形状不一样。

  三、拓展探究

  1、展示可以拉伸的平行四边形,演示由平行四边形拉成长方形的过程

  师:那么这个平行四边形在拉成长方形时面积发生改变了吗?

  学生讨论

  学生1:没有改变

  学生2:改变

  学生辩论

  师:周长一样长的平行四边形和长方形,面积不一定也一样。

  四、总结

  这节课我们学习了什么,回顾整堂课的过程。

  用今天的方法还能解决以后的问题,比如说三角形、梯形的面积。

  预知后事,自己分晓。

  板书设计

  新面积不变平行四边形的面积=底×高

  拼数

  已学(转化)长方形的面积=长×宽

  S=a×h

  《平行四边形的面积》教学设计 篇9

  【 教学内容 】人教版小学五年级数学上册《平行四边形的面积》计算。

  【 教材分析 】《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形的面积及立体图形的表面积奠定基础,因此起到承上启下的作用。

  【 学情分析 】学生虽然已经学过了长方形面积计算方法和平行四边形特征,但小学生的空间想象能力不够丰富,推动平行四边形面积计算公式有困难,因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成过程。

  【 教学目标 】:

  1、 知识与技能:

  (1)学生尝试探索、动手实践推导出平行四边形面积计算公式;

  (2)能正确求平行四边形的面积。

  2、过程与方法:

  让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观:

  培养学生的分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性;感受学习数学的快乐。

  【 教学重点 】:能正确的求平行四边形的面积。

  【 教学难点 】:平行四边形面积的计算公式推导。

  【 教具准备 】:平行四边形、长方形、课件、剪刀、直尺

  【 教学过程 】:

  一、创设情境,揭示课题

  同学们,我们的好朋友熊大今天要到一家公司去应聘,可是老板出了道题,这下可把他给难住了,同学们,让我们一起来帮助熊大顺利通关好吗?我们先来看看是一道什么考题。

  (出示课件)老板用铁丝做了一个长方形拿住对角一拉成了一个平行四边形,是原来的长方形面积大还是后来的平行四边形面积大呢?让我们先来回忆下关于长方形和平行四边形都学过些什么知识?

  那么要想知道那个图形的面积大?我们就需要计算他们的面积,长方形的面积我们以前学过,那平行四边形的面积怎么算呢?这节课就让我们一起来研究:平行四边形面积(板书课题)

  二、学习新知

  (一)面积公式的推导

  1、用数方格法求平行四边形的面积

  以前我们学习长方形和正方形面积的时候,用过一种方法——数格子。下面我们就用数方格的方法,看你能不能数出平行四边形和长方形这两个图形的面积?打开数学书87页试试吧。(完成数学书87页)

  (多媒体出示)现在大家再仔细观察,通过这个表格你能发现什么?(边说边演示课件)

  生:长方形的长和平行四边形的底相等,都是6米,长方形的宽和平行四边形的高相等,都是4米。面积也相等是24平方米。

  师:你们都找到这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。

  数方格虽然可以数出平行四边形的面积,可是在现实生活中,比如草坪或一块地,或者是是一个非常大的平行四边形,我们还能用数方格的方法吗?(不能)所以我们得研究出一种更简便的方法来计算平行四边形的面积。

  (二)动手操作,推导公式

  1、提出合作要求

  拿出我们准备的'平行四边形,刚才我们就发现平行四边形与长方形之间有密切的联系。下面我们就利用这个平行四边形看能不能把它转化成我们学过的长方形,如果能转化成长方形,思考大屏幕上的问题。下面就自己动手操作一下吧!自己做完了,小组交流一下,看看谁的方法更好一些?

  2、汇报交流结果

  (1)、(实物投影)从这个顶点向对边作高,然后沿高剪开,就得到了一个三角形和一个梯形,把三角形平移到右边,就拼成了一个长方形。

  (2)、(实物投影)从平行四边形的这条边上任选一点向对边作高,然后沿高剪开,就得到了两个梯形,再把这个梯形平移到右边,就拼成了长方形。

  长方形和原来的平行四边形之间有什么关系呢?想一想,它们什么变了?什么没变呢?(形状变了,面积没变。长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等)。

  师:你们都找到这个关系了吗?根据长方形面积=长×宽,你能不能推导出平行四边形面积的计算公式?

  生:平行四边形面积=底×高(板书)

  师:也就是说,要想求平行四边形面积,必须知道它的底和高。如果用大写字母S表示平行四边形的面积,a表示底,h表示高,谁能用字母描述一下平行四边形面积的公式?

  生:S=ah(板书)

  你可以根据这个乘法算式写出两个除法算式吗?分别是h=S÷a a =S÷h 这两个公式表示什么?根据这两个公式,当我们已知面积和底就可以算出高,还可以已知面积和高算出底。

  (三)面积公式的应用

  通过转化我们找到了新旧知识之间的联系,从而解决了新的问题,相信大家在今后的学习中会不断的运用这种方法来学习。下面我们就用我们自己总结的方法来解决实际问题,相信大家一定没有问题。

  1、出示例一,平行四边形的花坛的底是6米,高是4米,它的面积是多少?(先独立完成,在集体订正)

  S=ah, =6×4

  =24(平方米)

  答:它的面积是24平方米。

  解答时要先写S=ah,再把底和高的数字代进去,再计算出结果。

  三、巩固练习

  1、熊大进入公司之后又遇到难题了,有需要我们大家的帮助了让我们一起去看看吧?那我们来看看,是什么题把他给难住了?原来求一个平行四边形的面积需要底和高两个条件,但是老板给熊大的平行四边形告诉了很多的条件,这可把他弄糊涂了,你会做吗?在本上试试。

  总结:底和高必须是相对应的

  2、在日常生活中,有很多这样近似平行四边形的图形,请看大屏幕:有一块地近似平行四边形草地,底是43米,高是20.1米。这块地的面积约是多少米?(得数保留整数)

  四、总结全课

  同学们,熊大经过和同学们一起学习终于学会计算平行四边形的面积了,你们都学会了吗?那谁能说说,你是怎么计算平行四边形面积的?那熊大进公司时的那道考题

  《平行四边形的面积》教学设计 篇10

  教学内容:

  人教版五年级上册第87——88页内容及练习十九相关练习。

  教材分析:

  本单元学习的内容主要包括:平行四边形、三角形、梯形和组合图形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。这是进一步学习圆的面积和立体图形的表面积的基础。学习组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特征的认识及面积计算,发展了学生的空间观念。

  教学目标:

  1、掌握平行四边形的面积公式,能准确计算平行四边形的面积。

  2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

  3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。

  教学重点:

  掌握平行四边形的面积计算公式,能准确解决实际问题。

  教学难点:

  理解平行四边形面积计算公式的推导方法与过程。

  教学准备:

  裁剪的平行四边形、学习单等。

  教学过程:

  上课的前一天,布置预习第87——88页内容,开展以下自学实践:

  1、长方形的面积计算公式是什么?

  2、长方形和平行四边形之间有什么联系?

  3、平行四边形的面积计算公式是什么?

  课堂过程:

  一、情境导入

  1.谈话:为了创建省级文明城市,美化我们的生活环境,高新居尚小区要修建两个大花坛,(课件出示86页情境图)。这两个花坛分别是什么形状?

  (一个长方形,一个平行四边形)

  2.学生猜测:你觉得哪一个花坛大一些?

  通过猜测,引导学生总结出:要想比较那个花坛大,需要计算它们的面积。

  3.提问:你会计算它们的面积吗?

  学生只会计算长方形的面积,不会计算平行四边形的面积。

  揭示课题:今天我们就来学习和研究平行四边形面积的计算。

  4.(板书课题:平行四边形的面积)

  【设计意图:】数学课应源于生活,由学生熟悉的情境导入,自然激发了学生学习数学知识的兴趣。本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,进一步体现数学与生活的'紧密联系。

  二、探究新知

  1.数格子,比较大小。

  师:根据我们已有的经验,我们并反馈答案可以用什么方法得出平行四边形的面积呢?(引出数格子的方法)

  (1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。

  (2)学生用数方格的方法得出两个图形的面积,并填写课本89页的表格。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?

  (学生:麻烦,有局限性。)

  (5)观察表格,你发现了什么?

  出示表格

  (6)引导学生交流自己的发现。(同桌讨论)

  反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:猜想:平行四边形的面积=底x高是否适合所有的平行四边形面积呢?

  【设计意图:】数格子的方法是探究图形面积的一种简单方法,学生轻松地理解,重在让学生对这两种图形相对应的量进行分析,在学生的脑海里初步得出:长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,这个时候他们的面积就相等,平行四边形的面积可能等于底乘高。让学生猜想平行四边形的面积公式,激起学生的探究欲望。

  2.动手操作,验证猜想。

  (1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。

  (2)学生汇报、展示:平行四边形变成长方形的方法。(沿着平行四边形的高剪开,把三角形向右平移,拼成一个长方形。或沿着平行四边形的高剪开,把直角梯形向右平移,拼成一个长方形)

  3.问题质疑,完成报告单。

  提出问题:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?

  ①平行四边形与拼成的长方形的面积有什么关系?

  ②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?

  ③长方形的面积公式怎样表示?

  ④平行四边形的面积公式怎样表示?

  (1)小组讨论

  (2)抽生汇报

  (3)师展示,验证。

  (4)观察并思考,小组合作完成报告单。

  (5)交流反馈,引导学生得出结论

  ①形状变了,面积没变。

  ②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (6)引导学生根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  平行四边形的面积=底x高

  用字母表示:s=ah

  (7)观察面积公式,要求平行四边形的面积必须知道哪两个条件?

  (平行四边形的底和高)

  (8)小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  4.运用公式,解决问题。

  (1)出示例1

  例1:平行四边形花坛的底是6米,高是4米,它的的面积是多少平方米?

  (2)学生独立完成。

  (3)抽生汇报,师板书。

  【设计意图:】探究的过程是学生掌握数学思想方法的关键环节,通过学生动手操作和合作交流,使学生主动地去探索和发现平行四边形面积的计算方法,最后让学生验证公式,学生在课堂上充分调动自己的数学思维,在动手、动脑、动口的过程中碰撞出了数学思维的火花。

  三、巩固运用

  1.计算出下面每个平行四边形的面积。

  2.选择题。

  四、全课小结:今天你有什么收获?

  五、作业:选用课时作业设计

  六、板书设计:

  平行四边形的面积

  长方形的面积=长x宽

  平行四边形的面积=底x高

  长方形的面积=长x宽

  平行四边形的面积=底x高

  课后记:

  第二课时

  教学内容:

  平行四边形面积计算的练习(P82~83页练习十五第4~8题。)

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  教学重点:

  运用所学知识解答有关平行四边形面积的应用题。

  教具准备:

  展示台

  教学过程:

  一、基本练习

  1、平行四边形的面积是什么?它是怎样推导出来的?

  2、.口算下面各平行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,第6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:250x780÷10000=1.95公顷,

  再求共收小麦多少千克:7000x1.95=13650千克

  (3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500÷(250x78÷1000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.(1)练习十五第5题:

  1.4厘米

  2.5厘米

  a、你能找出图中的两个平行四边形吗?

  b、他们的面积相等吗?为什么?

  c、生计算每个平行四边形的面积。

  d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  (2)练习十五6题

  让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)

  3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。

  7m

  分析与解:因为平行四边形的面积=底x高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  练习十五第7题。

  四、作业

  练习十五第4题。

  课后记:

  《平行四边形的面积》教学设计 篇11

  教学目标:

  1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。

  2、能正确地应用公式计算平行四边形的面积。

  教学重点:

  探索并掌握平行四边形面积计算公式。

  教学难点:

  理解平行四边形面积计算公式的推导过程,体会转化思想。

  教学准备:

  课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。

  教学过程:

  一、激趣引入

  1、创设情景

  师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)

  师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)

  师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)

  师:回忆一下,以前我们是用什么方法得出长方形的面积的。

  2、稳固复习

  师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。

  生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。

  师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?

  生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。

  师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)

  师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)

  师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)

  二、新知探究

  1、数方格

  师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?

  生:一格代表1m2,不到一格按半个计算。

  师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)

  2、推导公式

  师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)

  生:相邻两边相乘,或者底乘高。

  师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?

  生:面积变小了,但四条边都没有发生变化。

  师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)

  师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?

  生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。

  师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?

  生:长方形。

  师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。

  (1)面积还相等吗?

  (2)转化后的长方形与原来的平行四边形有什么关系?

  (3)长方形的长、宽与平行四边形的底、高有什么关系?

  (4)怎么计算平行四边形的面积?

  生:沿着一条高切下来,不到另一边就变成了长方形。

  师:试着说说上面的四个问题。

  生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的'面积是长乘宽,所以平行四边形的面积是底乘高。

  (生边说师边演示,并进行适当的引导)

  师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)

  师:还有其他的方法吗?

  生:演示方法。(课件演示两种方法)

  师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)

  师:平行四边形的面积大小是由()和()决定的。共同决定的。

  3、回顾总结

  回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?

  三、练习巩固

  (一)基础练习

  1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

  2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)

  3判断:

  ①平行四边形的底是7米,高是4米,面积是28米。()

  ②a=5分米,h=2米,s=100平方分米。()

  ③平行四边形的底越长,面积就越大。()

  ④平行四边形的高越长,面积就越大。()

  4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。

  a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小

  5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。

  (二)拓展提升

  1、计算下面每个平行四边形的面积。

  2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  四、总结提示

  师:回忆一下,今天这节课有什么收获?

  总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

  板书设计平行四边形的面积

  数方格

  长方形的面积=长×宽

  计算平行四边形的面积=底×高(底高对应)

  s=ah

  割补法(转化)

  《平行四边形的面积》教学设计 篇12

  内容简析:

  平行四边行的面积是人教版五年级上册第六单元第一节内容,本视频以面积公式的推导和公式的应用为主要内容。

  教学目标:

  1、使学生经历探索平行四边形面积计算公式的推导过程,渗透转化的思想。

  2、掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的.实际问题。

  教学重点:

  探索并掌握平行四边形的面积计算公式,渗透转化的思想。

  教学设想:

  学习完平行四边行的面积,接下来要学习三角形、梯形的面积。所以通过这个视频要给学生渗透转化的思想,为下节课的学习打好基础。让学生理解、领悟,体验计算公式的推导生成显得尤为重要。

  教学过程:

  一、复习引入

  同学们三年级时我们学习了长方形、正方形的面积,今天我们一起来研究平行四边形的面积。

  二、质疑猜想

  师:对于面积,大家并不陌生。我们已经学过长方形和正方形等平面图形的面积,例如:长方形的面积=长×宽。

  质疑:平行四边形的面积怎样计算得出呢?

  三、操作验证

  用数方格的方法发现长方形和平行四边形的面积相等。要求:不满一格的算半格。

  2、验证面积=底×高

  那平行四边形的面积与底和高会不会有关系呢?现在我们利用转化的方法来验证一下。

  将平行四边形沿着底边上的任意一条高剪开,平移,可以拼成一个长方形。则平行四边形的面积就是长方形的面积,平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。长方形的面积=长×宽,所以平行四边形的面积=底×高。如果用字母S表示面积,a表示底,h表示高。则S=ah。

  四、公式应用

  学会了平行四边形的面积公式,我们可以用它来解决生活中的一些实际问题。

  有一个平行四边形的草坪,底是6米,高是4米,它的面积是多少?

  S=ah=6×4=24(平方米)

  五、全课总结

  回想一下刚才我们的学习过程,你有什么收获?

  《平行四边形的面积》教学设计 篇13

  教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

  教学重、难点:探索并掌握平行四边形的面积计算公式及推导过程。

  教具学具课件、平行四边形卡片、剪刀、三角板、直尺等。

  教学模式:“我能行”四步教学法。(详见文后注)

  教学流程:

  课前交流:同学们,你们想了解老师吗?你想知道关于我的什么情况?

  预设:老师的年龄是多少?教几年级?

  师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?

  生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。

  师:想得真好,许老师就是(30)岁。

  师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。 这节课我们就用这种数学“转化”思想来学习本节课。

  一、情境导入,确定目标

  师:1.在数学课堂上哪些地方用到了“转化”?

  预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。

  看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。

  2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?

  生:演示方法。

  3.师:为什么把它拼成一个长方形呢?

  预设:学过长方形面积的计算,而且能够拼成长方形。

  这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。

  4.刚才的图形“转化”过程,什么变了,什么没变?

  5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。

  (1)我会用“转化”的数学思想推导平行四边形的面积计算公式。

  (2)我会用平行四边形面积公式解决实际问题。

  【设计意图】情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。

  二、互动展示,生成问题

  师:1.你猜一猜平行四边形的面积会与什么有关?

  预设:长方形、正方形、底、高、夹角、相邻的边等。

  2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的'面积。

  3.请带着问题自学。(课件)

  4.四人小组交流一下你是怎样“转化”平行四边形面积的。

  【设计意图】通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。

  三、启发思路,引导归纳

  师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?

  2.平行四边形的面积怎么算?

  3.板书:平行四边形的面积=底×高

  4.你是怎样推导的?说一下你的操作过程。

  5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)

  6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)

  7.这个平行四边形与剪拼的长方形之间有什么关系?

  预设:平行四边形的面积与长方形的面积相等(板书)

  8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?

  9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)

  【设计意图】在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。

  四、练习检测,拓展链接

  1.练习检测卡一题。

  2.课件:判断、选择题、口答列式。

  3.练习检测卡二、三题。

  4.谈谈你对这节课的收获,好吗?

  拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。

  【设计意图】归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。

  板书设计:

  (注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)

  《平行四边形的面积》教学设计 篇14

  一、在引入中体现

  通过课本中的情境图和老师的引导,使学生感受到数学源于生活,寓于生活,用于生活。让学生领悟到数学的价值,从而体现《课标》的人人学有价值的数学的基本理念和数学与生活实际相结合的要求。

  二、在联系中感知

  通过数方格求平行四边形和长方形的面积并完成书上的表格,让学生观察发现它们之间的联系:即面积相等、平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等。由长方形的面积=长×宽,让学生初步感知平行四边形的面积=底×高的方法。

  三、在比较中掌握

  通过学生剪拼、平移的动手操作,将平行四边形转化成已学过的长方形后,引导学生观察思考。比较转化前后的平行四边形的底和高与长方形的长和宽之间的关系,面积之间的关系。利用联想和可逆性思维推导出平行四边形的面积计算公式。从而理解掌握平行四边形面积的计算方法。

  四、在过程中渗透

  在整个教学过程中渗透数学思想和方法。如在面积公式的推导中渗透平移、转化和化归的.数学思想和方法。在习题中设计要计算平行四边形的面积必须将对应的底和高相乘,以及单位不同的底和高直接相乘得面积的判断题,从而渗透对应的数学思想。在推导公式时引导学生观察平行四边形转化成长方形后形状发生了改变而面积未发生变化来渗透“变与不变”的辩证思想。

  五、在习题中训练

  通过出现不同层次、形式多样的习题。如只出现平行四边形的图形要学生求面积,单位不同的底和高直接相乘得面积的判断题和出现不相对应的底和高求面积的题目等。从而训练学生思维的有序性,深刻性和批判性,避免思维的随意性。

  六、在交流中培养

【《平行四边形的面积》教学设计】相关文章:

《平行四边形的面积》教学设计06-16

平行四边形的面积教学设计07-22

《平行四边形的面积》教学设计05-20

面积教学设计06-20

平行四边形的面积的优秀教学设计11-02

《平行四边形面积的计算》教学设计05-15

平行四边形的面积公式教学设计10-01

圆的面积教学设计05-16

数学面积的教学设计06-04

圆的面积教学设计07-13