当前位置:9136范文网>教育范文>教案>《轴对称图形》教案

《轴对称图形》教案

时间:2025-10-11 11:56:25 教案 我要投稿

《轴对称图形》教案

  作为一名无私奉献的老师,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?下面是小编为大家整理的《轴对称图形》教案,仅供参考,大家一起来看看吧。

《轴对称图形》教案

《轴对称图形》教案1

  教学目标

  1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。

  2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。

  教学重点:

  认识轴对称图形的基本特征。

  教学难点:

  能判断出轴对称图形。

  教学工具

  课件

  教学过程

  一、故事导入,激发兴趣

  播放课件,故事导入新课

  二、探究新知,感知对称

  (1)引导观察,感知对称

  师:为什么说在数学王国里,蜻蜓,树叶,蝴蝶都是一家子呢?

  师:请同学们仔细观察这些图形的左边和右边,说说你发现了什么?

  学生自由发言

  生1:我发现……

  生2:我发现……

  (2)认识轴对称图形

  师:同学们观察的非常仔细,说得也很有道理。下面,请同学们想象一下,如果我们把这些图形的左边和右边对折起来,会发生什么情况呢?

  学生自由发言。

  课件演示对折过程,说明对折后图形的两边完全重合的现象,就是对称

  师:生活中你还见过哪些对称现象?学生自由发言。

  学生欣赏对称美(课件出示)

  (3)在实际操作中深入认识轴对称图形

  师展示剪好的衣服,这件衣服是对称的吗?你有什么办法来验证吗?学生发言。

  你有什么办法把它剪出来吗?注意用剪刀安全,不要伤到自己的小手

  学生剪出小衣服之后介绍操作方法:用长方形的纸,先对折再画一画,最后剪出小衣服。

  教师:用这样的方法,你还能剪出其它图案吗?试试看,相信你一定能行!教师收集学生的作品,是实物投影展示。

  教师:老师展示的这些作品,它们形状不同,但它们有什么共同点?小组讨论,选代表发言。教师小结:像这样通过对折,再剪出的图形都是对称的,它们都是轴对称图形。

  教师;谁来说说轴对称图形有什么特点?

  (4)引导学生认识对称图形的对称轴。

  谈话:将对折的图形打开,你有什么发现?(中间有一条折痕。)

  师:这条折痕所在的直线就是这个轴对称图形的对称轴。

  教师指导学生在剪出的图形上画出对称轴,对称轴用虚线表示。

  三、拓展延伸,巩固深化

  1、指导学生完成教材第29页“做一做”。

  下面这些图形中,哪些是轴对称图形?

  引导学生在头脑中将图形对折,看看是否完全重合。

  2、完成教材“练习七”的第2题。

  谈话:我们接触最多的10个阿拉伯数字里也有轴对称图形,你能找出来吗?

  出示第2题的数字图,学生寻找。

  交流汇报。

  3、说一说下面的字母,哪些是轴对称的?

  4、说一说下面的汉字,哪些是轴对称的?

  5、完成教材“练习七”的第3题。下面的图形分别是从哪张对折后的'纸上剪下来的?连一连。

  学生读题,说说下面的图案分别是从哪张对折后的纸上剪下来的,连一连。指名回答。

  四、课堂小结

  师:通过今天的学习,同学们有哪些收获?

  学生自由发言。

  教师小结

  这节课我们从生活中的对称现象认识了轴对称图形,只要我们留心观察,我们生活的周围处处可以看见轴对称图形,正是因为有了这些图形,我们的生活才会装扮得这么美丽。

《轴对称图形》教案2

  教学目标:

  1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。

  2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

  教学重、难点:

  1、认识图形的对称轴,并能画出轴对称图形。

  2、能画出平移后的图形。

  教学建议:

  1、注意让学生真正地、充分地进行活动和探究。

  2、恰当把握教学目标。

  3、注意知识的科学性。

  章节名称图形的运动(二)课时

  课标要求

  教学目标

  1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。

  2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

  内容分析

  学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形,发展空间观念。

  学情分析

  在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的`概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。

  教学重点

  1、认识图形的对称轴,并能画出轴对称图形。

  2、能画出平移后的图形。

  教学难点

  1、认识图形的对称轴,并能画出轴对称图形。

  2、能画出平移后的图形。

  学生课前需要做的准备工作

  教学策略

  轴对称

  教学目标:进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。

  教学重难点:认识图形的对称轴,并能画出轴对称图形。

  教学环节:问题情境与教师活动、学生活动、媒体应用、设计意图、目标达成、导入新课。

  一、创设情境

  出示轴对称图片

  师:这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体,今天我们就一起来研究这些美丽的对称图形。(板书:轴对称图形)

  二、复习旧知

  1、你还见过哪些轴对称图形?

  2、什么样的图形是轴对称图形?

  3、看书中图片,画出对称轴。

  三、学习新知

  1、出示例1

  (1)这幅图对称吗?

  (2)中间这一条直线表示什么?

  (3)点A和点A在这幅图中是两个对应点,它们到对称轴的距离都是( )个小格。

  (4)点B和点( )是对应点,它们到对称轴的距离都是( )个小格。

  (5)点C和点( )是对应点,它们到对称轴的距离都是( )个小格。

  (6)我发现:在轴对称图形中,对称轴两侧相对的点到对称轴的距离( )。

  2、小结:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。我们可以用这个性质来判断一个图形是否是对称图形。或者画对称图形。

  2、出示例2

  (1)引导学生思考:

  A、怎样画?先画什么?再画什么?

  B、每条线段都应该画多长?

  (2)在思考的基础上,用铅笔试画。

  (3)小结:

  1、找出所给图形的关键点。

  2、数出或量出图形关键点到对称轴的距离。

  3、在对称轴的另一侧找出关键点的对称点。

  4、按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。

  四、课堂练习:P84做一做

  五、课堂小结:这节课你有什么收获?

《轴对称图形》教案3

  [教学目标]

  1.过实例观察,感悟数学的美,了解简单图形经过旋转制作复杂图形的过程。

  2.了解旋转三要素,能在方格纸上将简单图形旋转90度,掌握基本的旋转方法。

  3.通过操作,培养学生动手操作能力,提高学生的空间想象能力。

  [教学重点]理解旋转三要素,能在方格纸上将简单图形旋转90度。

  [教学难点]旋转的步骤与方法。

  [教学准备] 教具:多媒体课件、三角形学具。

  学具:小棒、三角形学具、带方格的练习纸(每人三张)。

  [教学过程]

  一、创设情境,揭示课题

  (一)创设情境

  图1 师:同学们,老师准备了几幅漂亮的图案,想看吗?请同学们边看边想,老师是用什么方法得到的这些图案?比比谁的眼睛亮!(播放课件:依次出现5个基本图形经过旋转得到的新图案)

  师:发现了吗,这个风车图案是用什么方法得到的?

  预设1:这些图案都是用旋转的方法得到的。

  预设2:有的是顺时针得到的。

  (二)揭示课题

  师:同学们观察得真仔细!这些图案都是由一个简单的基本图形按一定的方向旋转得到的。这节课我们就来学习图形的旋转。(板书课题:图形的旋转)

  【设计意图】兴趣是最好的老师,所以激发学生的学习兴趣在抽象的空间与图形课堂中是非常重要的。通过图案欣赏在激发学生学习兴趣的同时,也让学生初步体会图形运动的特点,从而激活学生已有的知识和生活经验,为学习新知创造良好的氛围。

  二、自主探究,解决问题

  (一)借助素材,认识旋转三要素 1.认识旋转方向。

  师:刚才,有的同学不仅说出了是用旋转的方法得到这些图案的,还说出了是按顺时针旋转得到的。顺时针就是指旋转的方向,(板书:方向 顺时针)你能用手比划一下顺时针是怎样旋转的吗?旋转的方向除了顺时针外,还有什么方向? 2.认识旋转角度。

  师:刚才我们不仅知道了旋转是有方向的,还认识了旋转的两个方向,顺时针和逆时针。老师这有个钟表,仔细观察,如果分针从12走到9,分针是怎样转的?如果从12走到2呢?如果从12走到3呢?为什么同样是顺时针旋转,分针的位置不一样呢?看来旋转的角度。(板书:角度)

  师:如果分针从3走到6,是怎样旋转的?追问:旋转了多少度呢?你能把这两句话连起来说说吗?(分针顺时针旋转90度)如果分针从12转到9,又该怎么说呢?

  3.认识旋转点。

  (1)旋转小棒。

  师:通过刚才分针的旋转,我们知道了旋转运动是有方向和角度的。那么接下来,你能用小棒也做这样的旋转运动吗? (第1页方格纸,将小棒绕A点顺时针旋转90度)

  (2)展示交流。

  师:同学们,你们怎么知道旋转了90度?90度角在哪儿?谁来指一指? 师:你怎么知道这个角是90度?(看方格纸上的小正方形就知道)如果没有方格纸,怎样确定这是90度呢?

  (3)展示错误,揭示旋转点。

  师:刚才老师发现有同学这样画的,他画的有问题吗?问题在哪? 师:我们一定要注意所绕的中心点不同(板书:中心点),旋转结果也会不同。

  4.总结旋转三要素。

  师:同学们,看来以后做旋转运动时,我们一定要注意三个要点,中心点,方向,角度。我们在描述旋转运动时,就要说清楚绕哪个点、按什么方向、旋转了多少度。就像这题目要求一样,能记住吗?谁能把刚才的小棒的旋转完整的再说一遍?(盖住题目要求,让学生多试说。)

  【设计意图】学生通过对熟悉的钟表指针的旋转的观察,在巩固旋转方向的基础上,通过问题的引领,顺势引出旋转角度。旋转点是图形旋转三要素之一,但学生自己不容易想出,老师引导学生通过将小棒绕A点顺时针旋转90度,学生势必出现错例,教师引导学生观察、思考错在哪,从而得出旋转点。

  (二)自主尝试,掌握方法

  1.提供素材,探究方法。

  (1)自主尝试。

  师:同学们,小棒的旋转我们会了,那给你一个图形也按要求来旋转,你会吗?请看屏幕,你能画出将三角形绕O点顺时针旋转90度后的图形吗? 图2 师:先想一下,旋转之后的三角形会是一个什么样子,它大概会落在什么位置上? 师:有想法了吗?你能把旋转之后图形画出来吗?试试看!有困难的同学可以再借助手中的三角形纸片,转一转。画完的同学你也可以借助三角形的旋转来验证一下你旋转的对不对,开始。

  (2)学生交流。

  师:你是怎么旋转的?

  预设:我是用这个三角形绕O点顺时针旋转了90度,然后画出了这个图形。

  师:刚才这位同学是借助三角形学具,通过旋转得到了三角形绕O点顺时针旋转了90度的位置。同学们你们画的和他一样吗? 2.观察比较,感知方法 。

  师:同学们,仔细观察,旋转之前的'三角形与旋转之后的三角形图形和位置有什么变化? 预设1:三角的大小没有变化。(教师适时小结:也就是旋转之后三角形的每一条边的长短,每一个角的大小都没有变化)

  预设2:三角形的位置旋转了90度。

  师:你们怎么知道是旋转了90度呢?90度在哪儿?从哪能看出来?

  预设:学生指两条直角边说:这两条边的夹角是90度。

  师:除了看这两条直角边的夹角是90度,还可以看那条?

  3.课件演示,总结方法。

  (1)多媒体演示。

  师:刚才我们是将三角形绕O点顺时针旋转了90°,到了这个位置,三角形的这条边从这儿(闪烁)旋转到了这儿(闪烁)正好是90度(闪烁),这条(斜)边从这里(闪烁)旋转到了这里(闪烁)也正好是90度。

  师:看来,三角形绕O点顺时针旋转90度,它的每条边也都会绕O点顺时针旋转90度,旋转之前的三角形与旋转之后三角形每条相对应的的边都互相垂直。

  师:请同学们闭上眼睛想象一下刚才旋转的过程:三角形绕O点顺时针旋转90度,能想象出来吗?

  师:老师刚才还发现了这几种画法,能说说错在哪吗?

  预设:斜边的位置不对,不是绕O点旋转了90°。

  预设:三角形的形状和大小不对。

  (2)提炼方法。

  师:刚才我们通过观察、比较知道了旋转之前的三角形与旋转之后三角形每条相对应的边都互相垂直,形成90度的角。如果没有三角形学具,你还能画出旋转之后三角形的位置吗?先自己想一想怎样画?有想法之后同桌互相说一说,一会准备全班交流。

  师:看来,我们将三角形绕O点顺时针旋转90度,可以先以一条边为基准开始旋转,画出这条边旋转90度之后的图形,一般先转水平或垂直边,注意长短不要发生变化,再画另一条边旋转90度之后的图形,依此这样,然后将它们连起来。最后观察是否每条相对应的边都互相垂直。

  【设计意图】想一想、画一画、比一比都是发展学生空间观念有效的策略,教师在学生没有画之前先让学生自己想一想旋转之后的图形大概会落在什么位置,初步感知旋转方法的基础上发展了学生的空间想象能力。旋转方法的掌握是本节课的重点也是难点,教师在学生充分交流的基础上,通过直观的操作,将旋转的路径直观化,加深了学生对旋转本质的理解。教师又通过“旋转之前与旋转之后图形与位置的有什么变化”,引导学生观察、比较、思考、归纳,师生共同总结旋转的画法。

  三、自主练习,应用拓展

  1.巩固练习,深化方法。

  师:同学都学会了吗?我们再用这个三角形做一次旋转好不好?将它绕O点顺时针旋转90度,这次我们不用学具,自己根据刚才我们总结的方法试着画出旋转后的图形。先想一想它旋转之后应该落在什么位置,有想法之后再动手画。

  师:(展示正确做法)刚才老师发现这个同学做得又对又快,请他上来交流交流方法。

  师:(错误的展示)这个问题在哪儿?

  生交流。

  2.总结提升,内化方法。

  师:同学们,刚才我们没有借助学具,画出了这个三角形绕O点顺时针旋转90度的位置,同学们真了不起!同学们想一想,我们在画图形旋转的时候还应注意什么问题?

  交流总结一般步骤:①先确定绕哪个点旋转,点出来。②看旋转方向,标出来。③看旋转角度,写出来。④用边旋转,画出来。⑤再观察旋转之后与旋转之前的相对应的的边是否垂直,验出来。

  3.拓展延伸,体会应用。

  将三角形绕O点逆时针旋转90度。

  【设计意图】通过练习,由浅入深,引导学生有效复习,利用学生错例的展示进一步巩固旋转的方法,将抽象的图形旋转方法内化为学生本身的认知。

  四、梳理小结,当堂检测

  师:同学们,这一节课我们一起研究了图形的旋转,能说说你有哪些收获吗?引导学生从知识、方法、感受三方总结。

  请将三角形绕O点逆时针旋转90°。

  【设计意图】从知识、方法、感受三方面去谈自己的收获,引领学生全面回顾梳理,帮助学生积累一些基本的数学活动经验,养成全面回顾的习惯,培养自我反思,全面概括的能力。

《轴对称图形》教案4

  学习目的:

  1.通过展示轴对称图形的图片,使学生初步认识轴对称图形;

  2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;

  3.培养学生的动手试验能力、归纳能力和语言表述能力。

  学习过程:

  一、探究活动(一)

  1.动手做剪纸:(1)将一张长方形的纸对折;(2)在纸上画出一个你喜欢的图形;

  (3)沿线条剪下;(4)把纸展开;

  2.观察下面的图形,它们有什么共同特征?

  3.结论:

  如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就是它的。这时,我们也说这个图形关于这条直线(成轴)对称。

  二:尝试应用(一)

  1.先想后做:下面图形是轴对称图形吗?如果是,请画出它们的对称轴。

  等腰三角形等腰梯形等边三角形

  平行四边形正方形圆

  2.想一想下列英文字母中,那些是轴对称图形?

  3.猜字游戏(抢答)

  在艺术字中,有些汉字是轴对称的,

  猜猜下列是哪些字的一半?

  三:探究活动(二)

  1.(1).看下面两组图形,和刚才的蝴蝶,枫叶等比较,有什么不同?

  第一组第二组

  (2)思考:这两幅图有什么共同点?

  2.结论:

  把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形这条直线叫做,折叠后重合的.点是对应点,叫做。

  四:尝试应用(二)

  1.下面给出的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点。

  2.说出图中点A、B、C、D、E的对称点。

  3.思考:(1)成轴对称的两个图形全等吗?

  (2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?

  (3)把成轴对称的两个图形看成一个整体,它就是一个什么图形?

  4.比较归纳。

  轴对称图形两个图形成轴对称

  区别个图形个图形

  联系1.沿一条直线折叠,直线两旁的部分能够

  2.都有

  3.如果把两个成轴对称的图形看成一个图形,那么这个图形

  就是如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线

  五:链接中考

  1.下图是由小正方形组成的“L”形图。请你在下图中添画一个小正方形,使它成为轴对称图形。

  2.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?

  六:智力测验:

  1.

  2.一辆汽车的车牌在水中的倒影如下图所示,你能确定该车的车牌号码吗?

  七:课堂小结:本节课你有什么收获?

《轴对称图形》教案5

  一、教材分析

  对称分为轴对称和中心对称,本教材教学的是“轴对称”的知识。在自然界和日常生活中具有轴对称性质的事物很多。教材主要借助生活中实例和学生操作活动判断哪些物体、哪些图形是对称的,并找出对称轴,让学生在实践活动中认识图形的特征,理解有关概念的含义,帮助学生建立空间观念,培养空间想象能力。

  二、学生分析

  学生对于自然界和日常生活中具有对称性质的事物并不陌生,他们具备一定的判断能力及语言表达能力。小学高年级学生个性仍趋活泼,对“美”的事物充满好奇,学习“轴对称”知识的积极性较高。

  三、教学策略

  《数学课程标准》指出:教师应“向学生提供充分从事数学活动的机会”,“学生的数学学习活动应当是一个生动活泼的、主动的、富有个性的过程……”

  因此,本课教学通过让学生动手画、折、剪、撕、量、比等活动,引导学生主动探索,从已有知识经验的实际状态出发,在猜测、想象、探索、交流中学习。同时,借助多媒体信息技术的动态演示,创设声像并茂、贴近生活的情境,达到生活材料数学化,数学教学生活化,让学生学有活力、活生生的数学。

  四、教学目标

  1、通过观察操作,认识轴对称图形的特点,并能正确判断哪些事物是轴对称图形,能正确地找到轴对称图形的对称轴。

  2、通过动手操作等实践活动,培养观察、分析、综合、抽象能力,以及空间想象能力。

  3、通过对实物及相关图片的欣赏,感受数学与生活的密切联系,感受对称美,渗透美育。

  五、教学准备:

  各种平面图形、葫芦形图片、飞机、天安门及奖杯平面图,彩纸、剪刀、彩笔,多媒体课件。

  六、教学过程

  (一) 创设情境 激趣蕴思

  1、播放“千手观音”,体会对称美

  师:同学们,生活中处处有数学,数学里又处处存在美,这节课,老师想和大家一起去领略数学中的美。请欣赏一段舞蹈。(电脑播放“千手观音”舞蹈片段)

  师:这是中央电视台春节联欢晚会上的一个著名舞蹈节目,名叫“千手观音”,她的动作造型美吗?(生:美)对呀,这些动作造型体现出一种艺术的对称美。看到她们的表演,老师也想表演一个小魔术,想看吗?

  2、 表演魔术,激趣蕴思

  师手持一个葫芦形图片,快速变成两个

  完全一样的葫芦,让学生观察它们的`特

  点:完全重合。

  3、撕纸游戏,激趣蕴思

  师:下面,我们来玩个撕纸游戏,先看老师撕。

  师将一张长方形纸对折后撕成圣诞树的

  一半,再展开成一棵圣诞树。

  学生试着玩撕纸游戏,然后展示几件作品,让学生观察它们的特点:对折后两侧完全重合。

  (二) 实践探索,感悟特征

  1、 电脑出示天安门、飞机、奖杯等画面

  师:看大家玩得开心,老师想让同学们欣赏几个画面。请看屏幕:(国歌声中屏幕上出现了雄伟的天安门;蔚蓝的天空中轰轰而过一架飞机;热烈的颁奖场面呈现高高举起的奖杯)

  2、 折一折,认识对称图形

  师:老师把这些物体画成了平面图形送给了大家,请你拿出这三个图形,这些图形有什么特点呢?让我们一起来研究一下,自己动手折一折、比一比,看看你能发现什么?

  3、学生汇报,课件演示对折图形

  师:对折后,折痕两边怎样?(生:完全重合)像这样的图形,猜一猜叫什么名字?(生:轴对称图形)

  师:对,像这样对折后两侧完全重合的图形叫轴对称图形,折痕所在的这条直线叫对称轴。如:(课件演示画对称轴)

  (三)参与探索,体悟特征

  1 判断下面平面图形哪些是轴对称图形。

  电脑出示:结合轴对称图形的特征,判断下面图形哪些是轴对称图形,并在小组里交流意见。

  1 2 3 4 5

  6 7 8 9

  师:请同学们先猜想一下,哪些是轴对称图形?然后利用手中的图形纸片,小组合作,共同验证猜想。

  (1)学生在小组里交流意见,并合作验证。

  (2)指几名学生汇报。(电脑演示:用不同颜色闪现是轴对称图形的几何图形,引导学生说清判断依据)

  (3)找对称轴:大家能找出这些对称图形的对称轴吗?(请几名学生上讲台指出来)

  2 判断下面图案哪些是轴对称图形。

  (1) 师:下面老师给大家带来两组我们很很熟悉的图案,看看其中有没有轴对称图形。

  电脑出示:

  中国 加拿大 俄罗斯 美国

  (2) 指名说说自己的判断和理由。

  3、猜一猜,加深认识

  师:最后,老师给大家带来的也是一组轴对称图形,这是一些国内外著名的标志,但只沿着对称轴画出一半,请大家猜猜它们分别是什么标志。

  中国联通 中国银行 奔驰汽车 奥运五环

  (四)实践制作,深化认识

  1、画一画。(画出下面每个图形的另一半,使它成为一个轴对称图形)

  2、制作一个轴对称图形。

  ⑴ 电脑出示:请结合轴对称图形的特征,动手剪一剪、画一画、折一折,创造一个轴对称图形。

  (2)电脑播放轻音乐,学生进行创作。

  (3)展示学生作品。

  (五)身体游戏,升华认识

  1、师;其实我们每个人不用借助别的任何东西,只要用自己的身体就能创造出很多对称的造型,同学们有兴趣一起来玩玩吗?

  2、电脑播放迪斯科音乐,师先示范,再请全体学生起立摆出各种不同的身体造型。

  3、请几名学生上讲台配乐表演。

  (六)欣赏对称美,总结全课

  1 师:下面,我们一起来欣赏一下生活中的对称美吧。

  (电脑出示:优美动听的古筝演奏声中呈现美丽的民间剪纸艺术、宏伟的典型建筑、漂亮的各式服装)

  2、总结:对称是一种美,是数学美在生活中的具体体现,希望大家能运用今天所学知识把我们的生活装扮得更美丽、更精彩!

  (七)作业设计:用我们今天学习的知识设计(或搜集)一些对称图形并把它们拼成一个美丽的图案,把它们贴在学习园地上,和同学们一起欣赏!

  七、 教学反思

  反思本课教学,成功之处在于教师留给了学生充裕的学习时间和广阔的学习空间,力图让学生用自己的思维方式自由、开放地去探索、去发现、去再创造,学生在看、撕、折、比、画、剪、猜、议、做等一系列活动中,张扬了个性,培养了动手操作能力及合作意识。使学生在整个学习过程中,进一步体会到对称图形的形成,感受到对称图形的内在美。在欣赏漂亮图案的同时与同伴分享“创造美的愉悦”,体会到数学和创造的美。

  板书设计:

  轴 对 称 图 形

  两侧完全重合 轴对称图形

  对折

  折 痕 对 称 轴

《轴对称图形》教案6

  课 题:

  复习圆、轴对称图形,数学教案-复习圆、轴对称图形。

  教 学目标:

  1、使学生进一步掌握相关图形的特征及运算。

  2、使学生的空间观念和想象能力得到培养。

  教学重点:公式及计算。

  教学难点:技能技巧。

  教具准备:小黑板 幻灯机

  教学过程

  一、基本训练:

  1、口算:

  在听算本上听算《口算卡片》(38 )。

  (1) 统计3分钟以内做完的同学加以表扬,然后指名报答案。

  (2)全班统一核对,老师选重点点拨,集体订正。

  2、口答:

  指名回答上一节课所学知识。解答百分数应用题应该注意什么?

  二、进行新课:

  1、复习圆的概念。设计如下问题:

  (1)圆的圆心是如何确定的?

  (2)什么是半径、直径,同一个圆的半径和直径有什么关系?

  (3)不同的圆有不同的圆周率吗?

  (4)什么是圆的周长?什么是圆的面积?

  2、复习圆的周长和面积的计算:

  (1)做143页的第11题。

  (2)集体讲评,让学生说一说圆周长的计算公式及面积的计算公式。

  (3)教师和学生一起回忆公式推导过程,小学数学教案《数学教案-复习圆、轴对称图形》。

  (4)在小黑板上出示如下问题:让学生口答。

  A、填空:圆周长是其直径的( )倍。

  大圆的半径是小圆的.3倍,大圆的圆周长是小圆的( )倍。

  B、判断:圆周率等于3。14 ( )

  圆的面积大小只与半径的长短有关。 ( )

  集体讲评。

  3、复习轴对称图形。做练习三十五的第二十六题。然后集体讲评。

  三、巩固练习:

  1、做练习 三十五 的第23 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:图形的特点。

  2、做练习三十五 的第24 题:

  (1)全班座练,指名板演。教师巡视,指导补偿生。

  (2)统一讲评,集体订正。重点讲清:运用的公式。

  四、当堂检测:(当堂效果验收,是课堂作业)

  在A本上做练习 三十五 的第30 题。

  五、当天检测: (当天效果验收 ,是家庭作业)

  在B本上做练习三十九 的第28、29 题

  教后感:

  数学教案-复习圆、轴对称图形

《轴对称图形》教案7

  教学目标:

  1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念

  2、探索并了解角的平分线、线段垂直平分线的有关性质.

  教学重点:

  1、角、线段是轴对称图形

  2、角的平分线、线段垂直平分线的有关性质

  教学难点:角的平分线、线段垂直平分线的有关性质

  准备活动:准备一个三角形、一张画好一条线段的纸张

  教学过程:

  先复习轴对称图形的知识,提问:角是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案.

  一、探索活动

  教师示范:(按以下步骤折纸)

  1、在准备好的三角形的每个顶点上标好字母;A、B、C.把角A对折,使得这个角的两边重合.

  2、在折痕(即平分线)上任意找一点C,

  3、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足.

  4、将纸打开,新的折痕与OB边交点为E.

  教师要引导学生思考:我们现在观察到的只是角的一部分.注意角的概念.

  学生通过思考应该大部分都能明白角是轴对称图形这个结论.

  问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试.是否也有同样的发现?

  学生应该很快就找到相等的线段.

  下面用我们学过的知识证明发现:

  如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求证:OE=OD.

  巩固练习:在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?

  (1)如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.

  (2)如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的'距离为5cm,则CD=_____cm.

  内容二:线段是轴对称图形吗?

  做一做:按下面步骤做:

  1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB的交点为O.

  2、在折痕上任取一点C,沿CA将纸折叠;

  3、把纸展开,得到折痕CA和CB.

  观察自己手中的图形,回答下列问题:

  (1)CO与AB有什么样的位置关系?

  (2)AO与OB相等吗?CA与CB呢?能说明你的理由吗?

  在折痕上另取一点,再试一试,你又有什么发现?

  学生会得到下面的结论:

  (1)线段是轴对称图形.

  (2)它的对称轴垂直于这条线段并且平分它.

  (3)对称轴上的点到这条线段的距离相等.

  应用:

  (1)如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.

  (2)如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.

  小结:

  (1)角是轴对称图形.

  (2)角平分线上的点到这个角的两边的距离相等.

  (3)线段是轴对称图形.

  (4)垂直并且平分线段的直线叫做这条线段的垂直平分线.简称中垂线.

  (5)线段垂直平分线上的点到这条线段的两个端点距离相等.

  作业:课本P193习题7.2:1、2、3.

  教学后记:

  学生对这节课的内容比较难掌握,特别是对于“角平分线上的点到这个角的两边距离相等”这个性质,一时难于理解.的部分原因是学生忘记了点但直线的距离是什么一回事.而对于中垂线的理解较好.基本上能找到当中相等的线段,并且用学过的知识予以证明.内容较多,容量较大.课后还要加强理解和练习.

《轴对称图形》教案8

  《轴对称图形》

  教学内容:

  小学数学第四册新增内容《轴对称图形》

  教学目标:

  1、在游戏比赛中凸现轴对称图形的基本特征,并通过观察、动手操作知道沿着一条直线对折,直线两边完全重合的图形叫轴对称图形。

  2、通过判断、验证、比较进一步加深对轴对称图形的认识和理解,并认识对称轴,根据特征会找和画一个轴对称图形的对称轴。

  3、在判断、验证、比较中培养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念。在交流、合作中学生学会从多种角度思考问题,培养思维的灵活性。

  教学重点:

  通过观察、动手操作,初步认识轴对称图形。

  教学难点:

  会找并且会画轴对称图形的对称轴。

  学科素养:

  养学生的观察、动手操作、思辨和语言表达能力,发展学生的空间观念

  学会从多种角度思考问题,培养思维的灵活性。

  教学过程:

  一、比赛引入,聚焦轴对称图形的基本特征。

  师:今天上课我们先做个游戏,比一比女同学和男同学谁的眼力最好,老师分别给你们看图形的一部分,你们马上猜出这个图形是什么?准备好了么?

  (出示多媒体):

  女生::蝴蝶。

  师:女生,你们都同意么?(出示)

  反馈:很好(竖起大拇指)。

  出示:

  男生1:木棍。男生2:铲子。男生:……

  出示:

  反馈(淡淡地宣布):第一局男生输了。

  出示第二轮题:

  女生异口同声:飞机。

  随即媒体出示:

  反馈:真厉害。

  问:现在轮到男同学了,媒体出示——

  男生3:盆子。男生4:帽子。男生:……

  媒体出示:

  反馈:第二轮男生又输了,再看最后一轮。

  出示:

  女生兴奋地叫起来:剪刀!

  随即出示并赞扬道:女生的眼力真厉害,男生看你们的了。

  出示:

  男生5:书。

  男生6:乒乓板。

  男生:……

  出示:并同情地说道:哎!可惜,又错了。

  生:老师,这不公平,女生猜得简单。

  教师回头一看银幕:你们猜得也很容易的呀!

  生:不是的,女生猜的图形两边一模一样的。

  (分别指着不同图形让同学们用语言说一下上下还是左右两边一模一样)

  评价:你不仅会观察图形中的特征,还能用简洁的语言叙述出来,一句话就让大家都听明白了,真厉害!

  师:老师画一条直线(教师在媒体的蝴蝶上画了一条对称轴,)你们说的是不是这条直线的两边一模一样。

  追问:那么飞机和剪刀的这条直线在哪里?(学生用手比划)男生猜的图形有没有这条直线?

  【设计说明:由于比赛内容的不公平,必然导致比赛结果的不公平,从而激发每个学生在为不公平比赛申诉中发现图形的特征,即直线的两边完全重合,直接突出知识点】

  二、缓和矛盾,揭示概念

  问:这样看来不是我们男同学的眼力差,而是女同学猜的图形很特殊。那么男同学,如果老师也给你们这样的图形,你们能一下子猜出来吗?

  银幕出示:半个兔子头

  男生:兔子

  追问:老师把图打印了出来,你们刚刚说女生的.团都有一条直线,兔子的直线在哪里?(指一指)

  追问:你们刚刚又说直线两边的图案是?

  操作:那么我想请一个同学用最简单的方法证明直线两边的图形完全一样?(停顿,给同学们思考后)不过我提个要求,要求边验证边说出验证过程。

  生:边操作边说,把“兔子头”对折,直线两边一模一样。

  (在学生折前:你是不是随便折,那你怎么折?在学生折的过程中:教师抓住“对折”要沿着一条直线对折、“一模一样”数学中叫“完全重合”,引导“沿着一条直线对折,直线两边完全重合”。(板书)

  师:像这样沿着一条直线对折后,直线两边完全重合的图形叫什么图形?(板书:轴对称图形,并标注拼音zhóu)

  全班朗读课题。

  【设计说明:通过比赛,直接抓住图形的主要特征,激发学生探究的欲望,学生在动手操作验证中揭示轴对称图形的概念,自然流畅。】

  三、在判断、辨析中进一步理解轴对称图形

  师:同学们现在如果给你一个图形,你能判断它是不是轴对称图形吗?

  出示图1:

  生:手势判断(是轴对称图形),一位学生上台演示证明(先指一指直线,再折,引导学生用规范的数学语言叙述概念)

  出示图2:

  生:手势判断(一小部分学生认为是的)

  师:请认为是轴对称图形的同学上来验证给大家看。

  反馈:生活中有一些图形看看是的,很有迷惑性,但实际上却不是的。

  出示图3:飞机和

  生:手势判断(是轴对称图形),一位学生上台演示证明,下面的学生一起说:沿

  着一条直线对折后,直线两边完全重合,所以是轴对称图形。)

  【设计说明:在正与反的判断辨析中进一步明确沿着一条直线对折,直线两边完全

  重合的图形是轴对称图形】

  出示图4:

  生:手势判断(一部分学生认为是的)

  师:这一次请大家在脑中“折一折”验证一下,验证后可以改变注意。

  一会儿,仅剩下少数学生坚持说“是的”,教师请其中的一位学生动手验证,结果发

  现不完全重合。

  反馈:最开始的时候很多同学一会儿说是,一会儿说不是,但是后面老师说了句什么话,脑中折一下,很多人改变了主意是怎么回事?

  生:老师,如果这双鞋背靠背,或者头对头就是轴对称图形了。(准备实物再对折)

  师出示图5:

  生:手势判断(大部分学生认为不是的)

  生1:如果两条鱼嘴对嘴或尾对尾就是了,并上台演示对折,不完全重合。

  生2:我认为是的,这样折不行,这样折就行了,生演示

  评价:对呀,说的真好,很会动脑筋,思维非常灵活,当发现这样折不行,可以换个角度折,只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。

  【设计说明:在判断完图3时,部分学生有可能还停留在直线两边“一模一样”,而对对折后完全重合理解还不够透彻,通过图4的判断,让学生在脑中“折”(发展学生空间想象能力)到引导学生动手验证,在辨析中进一步加深对轴对称图形特征的认识,图5由于图4的负迁移,会产生争议,组织学生辨析,明确只要找到一条直线,直线两边完全重合的图形就是轴对称图形。同时又打破了学生的思维定势,更活跃了学生的思维。】

  四、认识对称轴

  师:刚刚同学们都说了轴对称图形都能沿着一条直线对折的,直线两边完全重合。(教师用手指出并画对称轴,如图像这样的一条直线我们称它“对称轴”)

  (上台画爱心,如果画的不一样)

  反馈:观察生1画的和老师有什么不一样?

  师:一般在数学上,画对称轴用直线,两边都要出头。

  追问:还有同学想画么,老师最后请一位同学上来画(画一个不是轴对称图形的溜冰鞋)

  反馈:你看看,同学们有不同意见了。让你画对称轴,只有轴对称图形才有,不是轴对称图形没有对称轴,老师和你开个玩笑的。

  全体学生练习画轴对称图形的对称轴。反馈略(书P:54/3)

  五、认识几何图形中的轴对称图形并能找到对称轴。

  师:接下去,同桌合作在信封内的几何图形中挑出轴对称图形。

  (图1)(图2)(图3)(图4)(图5)(图6)

  生1:图3、图4、图6是轴对称图形。

  生2:图2也是轴对称图形。

  生3:我折过的,图2不是轴对称图形。

  师:看样子,其他图形没意见,分歧在图2。请生3演示证明给大家看为什么它不是轴对称图形。

  生3:演示证明

  生2:这样折不行的,应该这样折,生2迫不及待上前演示证明:

  师:对呀!只要找到一条直线,沿着这条直线对折,直线两边完全重合,这个图形就是轴对称图形。

  师:接下去请找出轴对称图形的对称轴,看谁找得最多!

  反馈:图2有一条对称轴。图4有两条对称轴。图3有4条对称轴。

  讨论圆的对称轴。

  生1:圆有四条对称轴。并用自己的学具指给大家看他所折的折痕。

  生2:还有也,这位学生用自己的学具又折出两条。

  生3:有很多很多条,这位学生也用自己的学具演示给大家看。

  师:由于学具比较小大家看不清楚,老师请电脑演示给大家看。(多媒体演示)

  数也数不清的条数,数学上叫无数条。

  师:刚才我们学习了数学中的轴对称图形,你能在生活中找到轴对称图形吗?

  生1:黑板是轴对称图形。

  生2:窗子是轴对称图形。

  生3:红领巾是轴对称图形。

  生4:大众出租车的牌子。

  生……(教师规范成平面图形)

  师:老师也找了一些。(媒体出示生活中的轴对称图形有脸谱、剪纸……,渗透民族文化教育)

  小结:

  你今天有什么收获?

  作业:

  师:今天的回家作业就是利用课上所学的知识,剪一个轴对称图形,并向大家介绍你的巧方法。

  【设计说明:由于课堂上的时间是有限的,怎样让课堂教学得于在课外有趣的延伸,剪一个轴对称图形,既体现了对轴对称图形进一步理解和运用,又有动手的乐趣,一举两得。】

  板书设计

  轴对称图形

  轴对称图形

  沿着一条直线对折,直线两边能够完全重合,这样的图形就叫做轴对称图形

《轴对称图形》教案9

  【教学内容】

  人教版义务教育课程标准实验教科书二年级上册P68。

  【教学目标】

  1、了解生活中的对称现象,认识轴对称图形的一正些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。

  2、通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新能力。

  3、在认识、制作和欣赏轴对称图形的过程中感受物体或图形的对称美。

  【教学重点】

  认识轴对称图形的基本特征。

  【教学难点】

  设计制作轴对称图形。

  【教具、学具准备】

  教师准备课件、一个蝴蝶图形;学生彩纸、剪刀、直尺及若干对称图形和不对称图形。

  【教学过程】

  一、创设情境,感受对称

  1、认识生活中的对称现象。眼镜导入新课。

  二、小组合作,探讨轴对称图形的特征

  1、认识对称图形

  师:看,老师还给大家带来了几张美丽的图片。

  生:蜻蜓、树叶、蝴蝶、脸谱的图片

  师:请孩子们仔细观察这些图形,你能发现它们共同的特征吗?

  生1:它们的两边一样的。

  生2:它们是对称的。

  师:你是怎样理解对称的?

  生2:它们的两边是一样的。

  师:这些图形真像你们说的那样,左右两边完全一样吗?

  生:是。

  师:谁能想个办法来验证这些图形左右两边完全一样呢?

  生:对折。

  师:对折,这个方法听起来倒挺不错的,(板书:对折)到底怎样对折,你能折给大家看一看吗?

  生:上台演示折蝴蝶图形

  师:刚才这位孩子用对折的方法证明了这个蝴蝶图形的左右两边是完全一样的。那大家也来试一试,好吗?

  生齐:好。

  师:那先听清楚要求:请小组长拿出1号信封里的4张图片,小组里的每个同学,把其中一个图形对折一下,看看这些图形的两边是一样的吗?开始吧。

  生:动手操作

  师:谁来说说你验证的结果?

  生1:我折的是脸谱图形,对折后它的两边是一样的。

  生2:我折的是蜻蜓图形,它对折后,两边是一样的。

  生3:我折的是蝴蝶图形,对折后它的两边是完全一样的。

  生4:我折的是树叶图形,对折后,它的`两边也是完全一样的。

  师:孩子们刚才折这些图形,对折后,它们的两边都是完全一样的,我们就说它们对折后,它们的两边重合了。

  师:老师这里还有一个图形,是什么?

  生:桃子图形。

  师:想折吗?

  生齐:想。

  师:这个图形就在你们的3号信封里,小组长拿出来分给同学们折一折,说说你发现了什么?

  生1:我发现了桃子图形一边大,一边小。

  生2:它没有重合。

  师:一点都没有吗?

  生齐:有一点。

  师:蝴蝶图形呢?

  生齐:全部重合了。

  师:像蝴蝶图形这样对折后两边全部重合我们就称为完全重合。

  师:孩子们看大屏幕(课件演示蜻蜓、树叶、蝴蝶、脸谱四个图形对折后左右两完全重合的画面)

  教师小结:像这样对折后,两边完全重合的图形,我们就把它叫做“对称图形”。(板书:对称)

  2、认识对称轴

  师:请大家打开对折后的对称图形,看一看,你又有什么新的发现?(把图贴在黑板上)

  生:有一条线。

  师:这一条线就是我们刚才折的折痕。

  师:这条折痕是怎么形成的?有什么特别的地方?

  生1:是对称图形对折后形成的。

  生2:折痕的两边是完全一样的。

  师:这样的折痕是对称图形中特有的,所以人们把这条折痕所在位置的直线,给它起了个形象简洁的名字,叫对称轴。(板书:对称轴)

  师:我们通常用虚线来表示对称轴。(板书:画对称轴)

  师:像这样,对折后,对称轴两边完全重合的图形我们就叫做“轴对称图形”。 (板书:轴)

  三、应用拓展、巩固新知

  1、判断轴对称图形

  师:刚才我们认识了轴对称图形,那给你一些图形,你能找出轴对称图形吗?(课件出示:P68的做一做)

  2、猜一猜

  师:老师给你们看几张轴对称图形,不过我只给你们看它的一半,你们能猜出它们是我们所学过的哪些汉字、数字或英文字母吗?

  3、找对称轴

  师:今天,老师还给你们带来了几个图形老朋友,打个招呼吧!

  (课件依次出示:长方形、正方形、圆形)

  师:这几个图形各有几条对称轴呢,请你折一折。(边说边点课件出示)

  四、师生共结

  师:孩子们真会观察生活,对称的物体真是无处不在,只要孩子们留心观察,我相信你们还会找到更多更美的对称。

《轴对称图形》教案10

  15.1轴对称图形教案

  【教学目标】

  知识与技能

  1、能理解平面直角坐标系中,与已知点关于x轴或轴对称的点的坐标的规律。

  2、能作出与一个图形关于x轴或轴对称的图形。

  过程与方法

  1、通过作图提高学生的实践能力。

  2、通过现实情境的创设,使学生体验到数学就在我们身边,从而培养审美情趣。

  情感、态度与价值观

  1、通过贴近生活的素材和问题情境,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。

  2、在作图过程中使学生体验数形结合思想,体验学习的乐趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

  【重点难点】

  重点:用坐标表示点关于坐标轴对称的点的坐标。

  难点:找对称点的坐标之间的关系、规律。

  【自主学习】

  一、复习:

  1、如果一个平面沿着一条直线折叠,直线两旁的部分能够_____,那么这个图形叫轴对称图形,这条直线叫____。

  2、经过线段的___并且___于这条线段的`直线叫做线段的垂直平分线,又叫做线段的中垂线。一条__的中垂线是它的对称轴。

  3、如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的_____;反过来,如果两个图形各对对应点的连线被同一条直线____,那么这两个图形关于这条直线对称。【 : 】

  4、在平面直角坐标系中,点 P(1,-1)关于 x 轴对称的点的坐标是___;点 P1(1,2) 关于 轴对称的点的坐标是____。【 】

  二、思考:

  分别写出下列各点关于 x 轴、 轴对称的点的坐标:

  一般地,已知点 P (a,b):

  ⑴ 点 P 关于x 轴对称的点的坐标为P1(__,__),

  ⑵ 点 P 关于 轴对称的点的坐标为 P2(__,__)。

  关于 x 轴对称的点,横坐标_______,纵坐标_______,关于 轴对称的点,横坐标_______,纵坐标_______。

  四、例题:

  ⑴ 如上图,写出四边形 ABCD 的 4 个顶点的坐标;

  ⑵ 画出四边形 ABCD 关于 轴的对称图形 A1B1C1D1;

  ⑶ 写出点 A1,B1,C1,D1 的坐标。

  五、巩固练习:

  1、分别写出下列各点关于 x 轴、 轴对称的点的坐标:

  A(-2,4) , B(3,-2) ,

  C(-1,-2) , D(4,0) 。

  2、作出图中多边形 ABCD 关于 x 轴、 轴的对称图形。 (上图“五-2”图)

  3、已知长方形 ABCD 的顶点坐标为 A(2,4),B(6,4),C(6,2),D(2,2) 。

  ⑴ 在图⑴中画出长方形 ABCD 向下平移 6 个单位得到的长方形 A1B1C1D1,写出点 A1,B1,C1,D1 的坐标;【 】

  ⑵ 在图⑵中画出长方形 ABCD 关于 x 轴对称的长方形 A2B2C2D2,写出 A2,B2,C2,D2 的坐标;

  ⑶ 你认为上述两题变换所得的结果是否一样?为什么?

  4、△ ABC 在平面直角坐标系中的位置如图所示。

  ⑴ 作出△ABC 关于 轴对称的△A1B1C1,并写出点 A1,B1,C1,的坐标;

  ⑵ 将△ABC 向右平移 6 个单位,作出平移后的△A2B2C2,写出点 A2,B2,C2,的坐标;

  ⑶ 观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴。

  六、习题:

  1、若点 P 在第三象限,则点 P 关于 轴的对称点在第__象限,点 P 关于 x 轴的对称点在第__象限。

  2、点 P (-2,3) 关于 x 轴的对称点坐标是______。

  3、已知点 P (3,-1) 关于 轴的对称点 Q 的坐标是 ( a+b,1-b ) ,则 ab=__。

  4、已知点 A (2,a) 关于 x 轴的对称点是 B ( b,-3 ) ,则 ab=__。

  5、若点 (10-a,5+b) 与点 (2,-5) 关于 轴对称,则 a+b=___。

  6、在平面直角坐标系中,若点P(3,a) 和点Q(b,-4) 关于x轴对称,则a+b=__。

《轴对称图形》教案11

  一、教学内容

  本单元是小学阶段第一次教学轴对称图形,首先结合实例感知对称现象,这是课程标准提出的内容与要求。生活中的许多物体具有对称特征,自然界有许多对称现象,联系实际教学轴对称图形离不开这些对称的物体和现象。初步认识对称的物体或现象,感受对称的奇妙与对称美,都有利于轴对称图形的教学。教学重点是轴对称图形,编排了两道例题。前一道例题教学轴对称图形的特点,让学生知道怎样的图形才是轴对称图形,学会判断一个图形是不是轴对称图形。后一道例题是制作简单的轴对称图形,通过创造性的制作,进一步感受轴对称图形的特点。编写的一“你知道吗”介绍了许多对称的昆虫、对称的自然现象、对称的著名建筑,有拓宽眼界、丰富知识,激发兴趣的作用。“奇妙的剪纸”是一次操作型的实践活动,指导学生利用轴对称图形的特点,剪出图案或花边。

  二、教材编写特点和教学建议

  1.先感受物体的对称,再体会图形的对称,加强轴对称图形的概念。

  第56页例题和“试一试”的教学分四步进行。第一步是观察天安门、飞机、奖杯三个物体,发现这些物体或是左右两边,或是上下两边,或是前后两边的形状、结构、大小都完全相同,从而接受这些“物体是对称的”这个概念。并带着这样的概念到身边去寻找对称的`物体。为什么先教学对称的物体?有三个原因。一是对称原先是生活中的概念,如人的脸部左右两边基本相同,就说脸是对称的。随着概念在各个学科的深入应用,概念也就逐渐分化和严格。在数学里就有中心对称,轴对称和平面对称三种情况。联系生活经验,先建立生活中的对称概念,再形成数学里的轴对称概念,教学比较顺畅。二是许多轴对称图形就是对称物体某个面的图形,认识对称的物体为认识轴对称图形宽广的现实背景。三是可以组织对称的物体与轴对称图形的对比,使轴对称图形的概念清晰、准确。尽管天安门、飞机、奖杯都是学生比较熟悉的物体,但要他们发现这三个物体的共同特征仍会有困难,教学时要给予适当的暗示或启发。如把手指或一根小棒放在天安门的中央,使学生注意到天安门的左右两边。

  第二步是把天安门、飞机、奖杯的一个面画下来,得到图形,使研究的对象从物体转移为平面图形。这是教学不能忽视的环节,关系到轴对称图形的概念是否正确,会不会与物体的对称特征相混淆。

  第三步通过对折图形,体会轴对称图形的特点,建立轴对称图形的概念。教材在第115页准备了天安门、飞机、奖杯的图形,可以把图形剪下来并对折。要求每个学生至少剪、折两个图形,发现的才是这些图形的共同特点。折痕两边的部分完全重合是轴对称图形的本质特征,也是概念的重要内涵。完全重合的两边必定大小一样、形状一样。但是,大小、形状相同的两边有时并不完全重合。所以,要让学生在对折的活动中仔细体会完全重合的含义,建立准确的数学概念。教材在天安门图形上介绍了对称轴,它是折痕所在的直线。介绍对称轴能帮助学生接受轴对称图形这个概念,在本单元不要求学生画出轴对称图形的对称轴,这是第二学段的教学要求。

  第四步是判断四个几何图形是不是轴对称图形,进一步加强概念。判断的依据是图形对折,折痕的两边能不能完全重合。不仅凭视觉和想象作出判断,还要动手对折进行验证。平行四边形是判断的难点,要在对折活动中体会虽然折痕两边形状、大小一样,但不能完全重合,因此不是轴对称图形。要注意语言的严密,这个三角形(梯形)是轴对称图形,不能说成三角形(梯形)是轴对称图形,因为许多三角形和梯形并不是轴对称图形。

  “想想做做”选择了一些常见的图案、英文字母、部分国家的国旗、部分交通标志,判断是不是轴对称图形。一方面使数学知识与现实生活联系起来,二方面帮助学生丰富社会知识,三方面能激发学习兴趣。教学时要注意三点,一是对个别较难识别与判断的图案、字母,要给学生必要的帮助。如紫荆花图案,英文字母N、S、Z等。二是判断国旗的时候,不能只看整体形状,还要看图案,但不要关注颜色。三是结合判断交通标志,适当介绍这些标志的意思。

  2.做轴对称图形,加深体验。

  教材里安排了三次制作轴对称图形的活动。第一次是第57页例题,鼓励学生创造性地制作。第二次是第58页第3题,在方格纸上画出图形的另一半,组成轴对称图形。第三次是剪纸,做出轴对称图案或花边。这三次制作的目的,都是加深对轴对称图形的体验。

  教学第57页例题要注意四点。一是适当出示一些材料,如纸和剪刀、钉子板和线、水彩画颜料和白纸,通过材料给学生启发,打开创作的思路。二是在制作前提醒学生想一想,怎样的图形是轴对称图形;在制作后看一看,做出的是不是轴对称图形。把数学概念贯穿在制作活动的全过程中,达到加强体验的目的。三是不要限于教科书里的几种制作方法,鼓励学生创新。四是加强作品的交流与,调动学生的积极性。

  教学“想想做做”第3题要注意两点。一是让学生独立地画,在画的过程中体会画的方法。二是通过交流明白制作的要领:先画出图形另一半的各个顶点,再连成图形。

《轴对称图形》教案12

  本单元初步教学对称现象和轴对称图形。学生认识轴对称图形后,能以新的视角去观察物体,研究图形,体验它们的对称美。本套教材两次安排轴对称图形的教学,本单元是第一次。教学要求是: 使学生初步认识生活中的对称现象,初步认识轴对称图形;能用简便的方法制作轴对称图形。至于轴对称图形的对称轴,仅仅知道就可以了。全单元编写了两道例题、一次试一试、一次想想做做和一次实践活动。在你知道吗里介绍了自然界里的对称现象以及对称在建筑中的应用。

  第一道例题的编写线索是生活中的对称现象简单的轴对称图形,大致分成两段: 第一段是观察天安门、飞机、奖杯等物体,发现这些物体的左右两边或上下两边的形状和大小都是相同的,它们都是对称的。并由此联想生活中还有一些物体也具有这种对称特征,即生活中经常能看到对称现象。第二段是把天安门、飞机、奖杯都画下来,从观察物体到研究图形。把这些图形剪下来并对折,发现折痕两边的部分能完全重合,教材告诉学生这些图形都是轴对称图形,让他们初步建立轴对称图形的概念。在形成轴对称图形概念的.过程中,学生经历操作、观察、概括等学习活动,教材中的文字叙述是和学生一起进行概括,引导他们正确理解知识,不是把知识灌输给学生。

  教学这道例题时,不能把物体的对称特点与轴对称图形这两个概念混为一谈。对称性是某些物体的特征,轴对称是部分平面图形的特征。正如天安门是对称的物体,画下来的天安门图形才是轴对称图形,天安门这个物体不是轴对称图形。

  试一试要求学生利用初步的概念进行判断,通过判断哪些图形是轴对称图形,哪些图形不是轴对称图形,加强对概念的理解。学生进行判断,要依据轴对称图形的特点对折后折痕两边的部分能完全重合,先操作再下结论。由于教材里的图形不便于对折,所以课前应做好相应的准备,为每一名学生都准备四个与教材相同的图形。这里只对图形个案,即只对这个三角形、这个梯形、这个平行四边形和这个五边形进行判断,不对一类图形的整体进行判断。所以,教学时要注意语言的准确。学生还没有认识梯形,现在只能把梯形称作四边形,他们对三角形和平行四边形的认识还很初步,教学时要说这个三角形是(或不是)轴对称图形,这个四边形是(或不是)轴对称图形。不要随意说成三角形是轴对称图形,因为并不是所有的三角形都具有轴对称特征的。

  第二道例题让学生动手制作轴对称图形,通过制作进一步体会轴对称图形的对称轴两边能完全重合。学生制作的兴趣肯定很高,而且方法是多样的,画、剪、围、拼都可以,教材中仅交流了其中的一部分。制作方法虽然不同,原理都是相同的,都在制作对称轴两边完全重合的图形。要引导学生一边制作一边体会,相互说说是怎样做的、怎样想的,为什么说做成的图形是轴对称图形,以达到制作的目的。

  想想做做第1、2、5、6题寻找了一些生活中常见的图形、一些英语字母、一些国家的国旗、一些交通标志,判断哪些是轴对称图形。选择这些素材有三个目的: 一是激发学习兴趣,再次体验轴对称图形是很多的,只要注意观察,经常能看到。二是通过一些国旗和交通标志,丰富学生的社会知识。三是体会对称美,体会生活中为什么经常有对称的物体、轴对称的图形,培养对数学的情感。这些目的,都需要在教学中认真落实。第3、4题是制作轴对称图形,第4题稍难一些,可以让学生先把上行中的四个图形对折(想像中对折),再与下行对照;也可以先把下行中的四个图形的另一半画出来,再与上行对照。

  《奇妙的剪纸》是一次操作型实践活动。教材分两段编写: 第一段先让学生欣赏一些漂亮的剪纸作品,了解剪纸是我国的民间艺术,历史悠久,流传广泛,在世界上享有盛誉,引起学生对剪纸的喜爱。更仔细观察这些剪纸中哪些是轴对称图形,从而得到启发,可以运用制作轴对称图形的方法剪纸。第二段指导学生利用正方形、长方形的纸剪出自己喜欢的作品。教材先作具体的示范,图示怎样折纸、怎样画、怎样剪,并鼓励学生创作。教学时可以让学生自己去看懂教材的图示,先模仿、再创造。

《轴对称图形》教案13

  学情分析:

  由于本教材是三年级下册的教学内容,所借用的则是二年级的学生。由于学生年龄小,自主探究的能力不强,如何让其在有限的时间和空间内,积极主动地参与到各个学习活动中,理解轴对称的含义,创造出轴对称图形,是本节课所需解决的问题。

  设计理念:

  图形特征的探究,方法应该是多元化的,而合作的学习方式能充分展示学生的各种思维方式,张扬个性,更好地培养学生的学习能力。为此,我设计了以下的教学活动。

  教学目标:

  1、使学生初步认识轴对称图形,理解轴对称图形的含义,能用自己的方法创造出轴对称图形。

  2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。

  3、引导学生领略轴对称图形的美妙与神奇,激发学生的数学审美情趣。

  重点:

  让学生感知对称现象,认识轴对称图形。难点:判别轴对称图形方法的得出。

  教学过程:

  一、创设情景,激趣导入。

  (1)出示眼睛不对称的娃娃头像图片。学生发表意见,引出课题。

  师:在我们生活当中,有许多事物都是因为有了对称才产生美,今天我们就一起去认识有着对称美的轴对称图形。

  (创设贴近学生心理特点和认知水平的情景,自然而然把学生引入新课。)

  二、感悟特征,“识”对称。

  1、出示天安门、飞机、奖杯、等图片,引导学生观察,说出它们的共同点。

  2、引导学生动手操作。(课本附页的图形)。

  引导学生通过动手折一折、比一比,感受这些图形“对折后两边完全重合”的特征。

  3、出示各种几何图形,让学生小组合作,探究其是否对称。 4、认识轴对称图形、对称轴定义

  师:像这样对折后,能完全重合的图形叫做:轴对称图形。(板书:对折完全重合)。

  把轴对称图形对折后,折痕所在的这条直线称为:对称轴。(板书:折痕对称轴)。

  (本环节,放手让学生操作、交流、体会。让他们在自主探索的过程中感悟特征。)

  三、深化认识,“做”对称。

  (1)让学生动手操作,创造轴对称图形。(学生操作,教师巡视)引导学生说说自己是怎么创造的,在交流中进一步深化学生对轴对称图形特征的认识。

  (2)展示学生作品。说说各自的创作方法。

  (在本环节设计了动手操作活动,使学生在获得发展的过程中愉悦身心,张扬个性。)

  四、多向拓展,“辩”对称。

  1、课件出示:天天开心。(心:是剪出来的轴对称图形)引导学生观察,发现“天”字也是轴对称的图形。 2、出示字母:BANG

  引导学生判断各个字母是否轴对称图形,出现争议的字母B,引导学生验证结果。

  3、挑战难题,激励优胜。

  ①“木”字的一半

  ②看似轴对称的“奉”字,让学生判断分析,合成“棒”字激励学生。

  4、指导学生掌握学习方法:(猜测——验证——总结)

  5、引导学生列举生活中的例子。

  (多向拓展,让学生感悟数学在我们生活中无处不在。)

  五、升华认识,赏对称。

  1、欣赏短片

  2、说一说。

  出示短片中不止一个对称轴的图片,让学生利用自己的认知能力说一说,为以后的学习铺垫。

  (通过赏析,引导学生感受生活的'美妙与神奇,激发学生发现美、创造美的积极情感。)

  六、课堂小结

  出示两幅是轴对称的表情图片,让学生说说自己今天的收获。(认知的、情感的)

  (本环节,既让学生感悟了成功的喜悦,也合理地整理了课堂的知识点。)

  师:轴对称图形是和谐、美丽的,而且在生活中发挥着重要的作用。最后,老师希望大家在以后的学习生活中,能继续用数学的眼光去观察生活,欣赏生活。

  板书设计:轴对称图形

  (猜测——验证——总结)

  对折完全重合

  折痕对称轴

  教学反思:

  我在本节课让学生通过折一折,比一比,摸一摸等直观手段,让学生初步认识了轴对称现象,还有轴对称图形,让学生能以新的角度去观察物体,研究物体,体验它们的对称美。我这节课最大的遗憾是没有提供一个让学生充分展示的平台,没有给予充足的时间学生表达自己的观点。

《轴对称图形》教案14

  教材内容

  人教版义务教育课程标准实验教科书二年级上册P68。

  教材、学生分析

  对称是大自然的结构模式之一,它广泛存在于我们的日常生活中,存在于人类创建的文明史中,具有多种变换形式。学生对于对称现象并不很陌生,例如,许多艺术作品、建筑设计中都体现了对称的风格。教材借助于生活中的实例和学生的操作,判断哪些物体是对称的,找出对称轴,并初步地、感性地了解轴对称图形的性质,但并不要求掌握“轴对称图形”的名称。

  教学目标

  1.了解生活中的对称现象,认识轴对称图形的一些基本特征。能正确识别轴对称图形,会设计制作简单的轴对称图形。

  2.通过观察、猜想、验证、操作,经历认识轴对称图形的过程,掌握判断轴对称图形的方法,培养学生的动手、创新等能力。

  3.在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的对称美。

  设计理念

  1.改变学生的学习方式,以自主探索、合作交流、动手实践为主要学习方式,促进学生的自主学习。

  2.充分尊重学生的'生活经验和认知基础,引导学生联系实际,感悟“生活数学”理念。

  3.将数学欣赏融入教学中,感受数学美。

  教学重点

  认识轴对称图形的基本特征。

  教学难点

  设计制作轴对称图形。

  设计流程

  一、理解感知“对称”

  1.首次探底:今天这节课我们要来研究图形王国中的一种现象──“对称”。你听说过对称吗?说说你印象中的对称。

  2.再次探底:出示组图(蝴蝶、狮子脸、椰树、枫叶),这些图形你觉得哪些是对称的?跟同桌说说为什么。

  3.交流反馈:你是怎样想的,说说你的理由?(预设①:多数学生能判断正确──你们是怎么看出来的?;预设②:少数学生能判断正确──展开生生交流,可分成正反两方争辩,陈述理由)

  4.引出验证:你能想个办法来证明蝴蝶、狮子脸、枫叶的两边一样,只有椰树的两边不一样吗?(预设:学生代表上台分别折一折蝴蝶、狮子脸、椰树、枫叶)

  5.师小结:像这样对折后两边完全重合在一起的图形,就叫做对称图形。(板书)刚才同学们把图形对折后留下的这条折痕,我们把它叫做这个对称图形的对称轴。(在黑板上用点划线范画对称轴)你能找出剩下图形的对称轴吗?你觉得对称轴有什么特点?

  6.即时生成资源并共享:在教室里找找有没有对称图形,指指它们的对称轴。全班互动交流评价。

  7.欣赏生活中的这些物体的形状,指指它们的对称轴在哪里。

  (意图:教学伊始,开门见山地结合课题进行探底,把握学生认知起点,以四幅色彩鲜艳的图片为纽带,唤醒学生的生活经验,再以“动手折一折”为依托,引出对称图形及对称轴的概念,并及时拓展到生活中去寻觅与欣赏,以学生现场找到的对称图形为资源,利用这些生成资源进行对称概念和对称轴概念的巩固。在这样的数学教学中,学生真切地感受到了数学资源和数学实践无处不在。细想之下,整个教学过程不就是一个从“生活经验”提升到“数学原型”的过程吗?而这样的过程又是在师生民主平等的对话和学生多样化活动中进行的。)

  二、实践深化“对称”

  1.讨论:刚才我们找出了很多对称图形,也欣赏了很多对称图形,老师也想来动手制作一个对称图形,你觉得我可以制作一个什么图形?……

  2.探究方法:师从学生回答中采纳一条意见,“大家能指挥老师做一做吗?”……(预设①:多数同学会──集体指挥教师后请学生小结方法;预设②:个别同学会──请同学上来演示,师生共同小结方法。)

  3.你想自己动手试一试吗?学生个体独立活动,看在相同的时间内,谁制作的对称图形最有创意、最漂亮。

  4.展示生成资源:把你的作品先露一半让大家想想可能是什么图形?再全部展开贴在黑板上,指指它们的对称轴(生生互动交流、评价)。

  (意图:在这一教学环节中,主要借助给老师出主意、动手做一做、互动评评议议的教学策略,让学生带着知识走进实践,不着痕迹地得出了制作对称图形的方法,主张通过实践使学生学会运用知识,发展思维。这里将教学的重点圈定于学生自主探求制作方法、创造对称图形之中,并对这些生成资源加以利用,感悟数学的应用性和数学美。)

  三、练习内化“对称”。

  1.出示常见图案。判断,如果是对称图形的,画出对称轴。(独立完成,反馈)

  2.出示长方形、正方形、圆形,折出对称轴(动手之前先进行猜想:你觉得他们可能有几条对称轴?动手实践验证)。

  (意图:这里主要借助于画一画的方法实现数学知识的内化和提升。如此,不但培养了学生实践应用的意识,而且有助于“猜测、验证”及感受“无限”的数学思想方法的渗透。)

  四、总结延伸:

  1.通过今天的学习,你学会了什么?你觉得学了对称图形后有什么用处呢?其实,对称还有很多种类型,以后我们将继续去学习。

  2.数学百花园:欣赏中国的剪纸艺术和世界各地的建筑艺术,进一步感受对称美。

  (意图:课已接近尾声,这里的两个环节目的在于梳理数学知识、升华数学知识,催生学生对生活中对称艺术的赞美,实现从轴对称图形──生活中其它对称现象的跨越,学生在背景音乐的渲染下,又一次经历了灿烂文化的熏陶。)

《轴对称图形》教案15

  教学目标

  知道轴对称物体及轴对称图形,明了轴对称图形的概念。

  能判断已知图形是否是轴对称图形,会判断常用的平面图形是不是轴对称图形,并能找出有几条对称轴。

  通过操作,培养学生的动手操作能力,向学生渗透美的.教育。

  教学重点

  轴对称图形的意义及会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。

  教学难点

  会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。

  教学方法

  课前准备

  自主学习式;小黑板、投影片

  教学设计

  思 路

  一、实物导入

  由轴对称物体向轴对称图形过渡。

  举例:生活中的轴对称物体和常见的轴对称图形。

  揭示轴对称图形的概念,特点及判断方法。

  二、寻找对称轴

  1、出示一组图形,判断是否是轴对称图形。通过操作寻找对称轴。

  2、学生动手操作,寻找常用平面图形的对称轴。

  三、巩固练习

  出示图形进行判断,并找对称轴。

【《轴对称图形》教案】相关文章:

《轴对称图形》教案09-29

轴对称图形教案04-29

轴对称图形教案06-10

《轴对称图形》的教案08-25

轴对称图形的教案06-28

轴对称图形教案新版08-28

《轴对称图形》数学教案11-20

小学数学《轴对称图形》教案06-13

《轴对称图形》教案设计07-06

苏教版《轴对称图形》教案(精选9篇)05-21