当前位置:9136范文网>教育范文>教案>《最小公倍数》教案

《最小公倍数》教案

时间:2025-10-17 11:35:29 教案 我要投稿

《最小公倍数》教案精品【15篇】

  作为一位杰出的教职工,很有必要精心设计一份教案,借助教案可以让教学工作更科学化。那要怎么写好教案呢?以下是小编帮大家整理的《最小公倍数》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《最小公倍数》教案精品【15篇】

《最小公倍数》教案1

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长3厘米、宽2厘米的长方形纸片16张,边长6厘米和8厘米的正方形纸片;练习四第4题的方格图、红棋和黄棋。

  教学过程:

  复习

  今天我们所学的知识与倍数有关,这在四年级我们已经学过了,同学们还记得吗?

  那谁能连续的说几个2的倍数?有什么特征?3的倍数呢?

  看来大家四年级的知识掌握的不错,那么今天我们就再来继续研究关于倍数的知识。

  一、经历操作活动,认识公倍数

  1、操作活动

  提问:(在投影仪上摆出长3厘米、宽2厘米的长方形纸片,以及边长6厘米和8厘米的正方形纸片)用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米和正方形,能铺满哪个正方形?请大家猜猜看

  拿出手中的图形,动手拼一拼。

  学生独立活动后,指名在黑板上用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米和8厘米的正方形。

  提问:通过刚才的活动,你们发现了什么?(用上面的长方形纸片可以正好铺满边长6厘米和正方形,但不能正好铺满边长8厘米的正方形)

  引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?(在边长6厘米的正方形下面板书:6÷3=2,6÷2=3)

  铺边长8厘米的正方形呢?每条边都能正好铺完吗?(在边长8厘米的正方形下面板书:8÷3=2......2,8÷2=4)

  2、想像延伸

  提问:根据刚才铺正方形过程,在头脑里想一想,用长3厘米、宽2厘米的长方形纸片还能正好铺满边长多少厘米的正方形?在小组里交流。

  生可能的想法:

  ⑴、能正好铺满边长12厘米、18厘米、24厘米......的正方形。

  在学生回答后,提问:你是怎么想的?(引导学生明确:12、18、24......除以2和3都没有余数)

  ⑵、能正好铺满的正方形,边长的厘米既是2的倍数,又是3的倍数。

  如果学生说不出这一点,可提问:6、12、18、24......这些数与2有什么关系?与3呢?

  3、揭示概念

  讲述:6、12、18、24......既是2的倍数,又是3的倍数,它们是2和3的倍数。(板书:公倍数)

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号来表示。

  引导:用长3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?(8不是2和3的公倍数)为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,然后在小组里交流。

  生可能想到的方法:

  ⑴依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?

  ⑵、先找出6和倍数,再从6的倍数中找出9的倍数。

  ⑶、先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:第⑵种和第⑶种方法有什么相同的.地方?你觉得哪一种方法简捷一些?

  2、明确6和9的最小的公倍数是18后,指出:18就是6和9的最小公倍数。(完成课题板书)

  3、用集合图表示。

  说明:我们可以用下图表示两个数的公倍数。先出示一个圈,表示6的倍数。想一想,里面可以填哪些数?旁边一个圈,表示9的倍数。想一想,里面可以填哪些数?指出:6和9的公倍数要填在两个圈相交的部分。想一想,里面应该填哪些数?

  引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、做“练一练”

  要求:(出示数表)先在2的倍数上画“△”,在5的倍数上画“○”,然后填空。

  集体交流:2和5的公倍数有什么特点?(是10的倍数,个位是0的自然数)

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、做练习四的第1题

  要求:把50以内6和8的倍数、公倍数分别填在题目下面的圈里,再找出它们的最小公倍数。

  提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提条件呢?

  2、做练习四第2题

  要求:先在表中分别写出两个数的积,再填空。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、做练习四的第3题

  要求:自己找出每组数的最小公倍数。

  集体交流,说说是怎样找的,让学生进一步掌握用列举法找两个数的最小公倍数。

  四、全课小结

  提问:今天学习的内容是什么?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

  引导:你还有什么疑问吗?

  五、游戏活动

  要求:下面我们来做个游戏。出示练习四第4题:红棋每次走3格,黄棋每次走4格。你能在两种棋都走到的方格里涂上颜色吗?在小组里先玩一玩,再想一想。

  提问:涂色的方格里写的数与3和4有什么关系?

《最小公倍数》教案2

  教学目标

  1.使学生理解公倍数和最小公倍数的含义,能用排列法找出两个数的公倍数和最小公倍数。

  重点难点

  1.掌握公倍数和最小公倍数的概念。

  主要教学方法

  新授课讲解法尝试法

  操作过程

  板书设计:公倍数、最小公倍数的认识

  例1.从小到大,顺次写出几个6的倍数和几个9的倍数,找出6和9公有的倍数,最小的一个公倍数是几?

  6的倍数有:6、12、18、24、36、42......

  9的倍数有:9、18、27、36、45、54......

  6和9公有的倍数有:18、36......其中最小的一个是18

  用图表示如下:

  6的倍数9的倍数

  6和9的公倍数

  几个数公有的倍数,叫做这几个数的公倍数;其中最小的`一个,叫做这几个数的最小公倍数。

  教师活动:预计时间()分钟

  学生活动;预计时间()分钟

  一. 准备题

  1.什么叫约数?什么叫倍数?

  2.用什么方法求一个数的倍数?

  3.一个数最小的倍数是什么?有没有最大的倍数?

  二.教学新课

  1.出示例1。

  2.学生尝试

  6的倍数有:6、16、18、24、30、36、42、......

  9的倍数有:9、18、27、36、45、......

  6和9公有的倍数有:18、36......

  3.教师讲评:也可以用图来表示:

  6的倍数9的倍数

  6和9的公倍数

  4.引导学生归纳出公倍数和最小公倍数的含义。

  三.练一练:

  1.第1题填在书上。

  2.第2、3两题

  3.独立练习:第4、5题

  四.课堂总结:这节课学习了什么?你有什么收获?

  学生口答

  1.学生读题

  2.尝试:指名板演,其余自练。

  3.先理解图意,再填入公倍数。

  1.指名说说

  2.把书上的发现告诉同学。

  3.看书上写的是不是与我们发现的相同?

  4.想一想:

  (1)有没有最大的公倍数?为什么?

  (2)倍数、公倍数和最小公倍数有什么区别?

  1.学生填在书上。

  2.找出相同点和不同点。

  相同点:找倍数和公倍数的方法相同。

  不同点:第2题前3个括号里要有省略号;第3题前3个括号里不该填上省略号。

  四.总结后做目标检测。

  延伸练习

  作业册70页

  反馈与矫正

  目标达成情况

《最小公倍数》教案3

  教学内容:书~23页例1、例2和“练一练”,练习四第1~4题。

  教学目标:1、让学生认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。2、让学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、让学生在学习过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学重点:1、理解公倍数和最小公倍数的含义。

  2、掌握求两个数的最小公倍数的方法。

  教学过程:

  一、游戏导入,激发兴趣

  谈话:今天我们先玩找朋友的游戏。

  (黑板上标有4、6数字,其他同学的号码是他们其中一位手中卡片的倍数就请站起来,两位同学收上符合要求的号码贴在黑板上。)

  出现争朋友的情况提问:你们为什么争朋友?(12、24等既是4的倍数,同时也是6的倍数)

  那么12、24等数与4、6是什么关系呢?今天我们就来继续研究关于倍数的知识。

  二、教学例1,认识公倍数

  多媒体出示例1

  1、想一想

  谈话:如果用一些长是3厘米、宽是5厘米的长方形纸片分别铺在这两个正方形上,看看铺的结果怎样?(教师提供材料,如果学生不能解决可以拼一拼)

  学生说猜想的结果和想法。

  2、议一议

  提问:为什么用这样的长方形纸片能正好铺边长6厘米的正方形?学生观察正方形的边长与长、宽之间的关系。

  引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺几次?怎样用算式表示?

  铺边长8厘米的正方形呢?每条边都能正好铺完吗?

  提问:这样的长方形纸片还能正好铺满边长是多少厘米的正方形?(同桌交流讨论)

  组织学生说一说。

  提问:能说说你的理由吗?

  引导学生明确12、18、24……除以2和3都没有余数。

  提问:6、12、18、24……这些数与2有什么关系?与3呢?学生发现6、12、18、24……既是2的倍数,又是3的倍数。

  谈话:只要正方形的'边长既是2的倍数,又是3的倍数,这样的正方形就能正好铺满。6、12、18、24……既是2的倍数,又是3的倍数它们是2和3的公倍数。(板书:公倍数)

  提问:两个数的公倍数的个数是有限的还是无限的?为什么?

  明确:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,可以用省略号来表示。

  提问:8是2和3的公倍数吗?为什么?

  学生回答:8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数。

  三、教学例2,求两个数的公倍数和最小公倍数。

  1、多媒体出示:6和9的公倍数有哪些?其中最小的公倍数是几?你有什么好方法能很快找出来?

  学生讨论交流做法和想法。

  教师组织交流:

  学生想到的方法可能有:

  (1)依次分别写出6和9的倍数,然后再找出它们的公倍数。

  (2)先找出6的倍数,再从6的倍数中找出9的倍数。

  (3)先找出9的倍数,再从9的倍数中找出6的倍数。

  引导:这三种方法你觉得哪一种方法简捷一些?

  谈话:6和9的公倍数中最小的一个是18,18就是6和9的最小公倍数。(板书:最小公倍数)

  3、集合图

  谈话:我们可以画图表示6的倍数、9的倍数和6和9的公倍数之间的关系。

  展示书上的集合图,你能从图中看出哪些数是6的倍数吗?哪些数是9的倍数?6和9的公倍数是哪些数?图中的三个省略号各表示什么?6和9的最小公倍数是多少?

  4、给课始活动时的板书加上集合圈。提问这里是否需要加省略号?明确什么情况下需要加省略号。

  四、巩固练习,加深对公倍数和最小公倍数的认识

  1、完成“练一练”。

  2、做练习四第2题。

  引导:4与一个自然数的乘积都是4的什么数?5、6与一个自然数的乘积呢?怎样找4和5的公倍数?填空时还要注意什么?

  3、做练习四第4题。

  说明题意,引导学生思考,哪些方格两种棋都会走到?这些方格中的数有什么共同特点?动笔涂一涂。

  然后同桌开展活动,玩一玩,看看红棋和黄棋是否都走到涂色的方格中。

  五、全课小结(略)

  六、布置作业1、练习四第1、3两题。 2、补充习题11页。

  课后反思:

  1、我为谁备课?

  根据教材的安排,教学中可以将引进概念的环节分成三个步骤。第一个步骤是操作,让学生用长3厘米、宽2厘米的长方形纸片分别铺长6厘米和8厘米的两个正方形。备课时,我认为这个环节简直是低估学生,上学期学生多次做过类似这样的题目,学生解决这个问题不是“小菜一碟”吗?于是,我制作一套材料以备不时之需。课中,发现有些学生对能否铺满边长8厘米的正方形有异议。还好准备一套,立即演示给学生看。看似解决了问题,其实是我剥夺了学生操作感悟的机会。所以,有时自己的想法往往又高估了学生,备课还是要从学生的实际出发。当然,要从学生的实际出发,这一节课的内容就无法完成,是想照顾到全体还是想完成一节课,孰是孰非?

  2、我为谁上课?

  按照教材的建议,这一课时要完成例1、例2和练一练以及练习四1~4题的教学。每次公开课后我都发现学生的课后作业令人失望。究其原因,为完成教学任务,课上即使发现学生没有得到充分的思考,或者练习没有都完成,也不肯为他们停留,为他们等待,而是硬着头皮往下开,导致“夹生饭”的出炉。其实,我知道学生参差不齐,想要在一节课中让每个人都能研究透那是不可能的,所以我把希望寄托在下一节课。公开课只想给听课老师留下一个完整的一节课的印象,感觉公开课不是为学生而开了。所以我也特别希望听课的评价体制能够有所变化,我们是想听真实的课,了解学生的真实情况,还是想看一节课的流程,至少这是我的一个困惑。我究竟应该怎样上课?

《最小公倍数》教案4

  教材分析:

  该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

  学情分析:

  五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的`概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  教学目标:

  1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

  2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

  3、渗透集合思想,培养学生的抽象概括能力

  教学重点:

  公倍数与最小公倍数的概念建立。

  教学难点:

  运用公倍数与最小公倍数解决生活实际问题

  教法学法:

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

  教学过程:

  一、任务导学

  师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

  师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

  师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

《最小公倍数》教案5

  课题一:两个数的

  教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。

  教学重点 理解公倍数、的概念。

  教学难点 求两个数的的方法。

  教学用具 投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和8 6和11 13和26 17和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1 及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的.?为什么?

  (3)归纳并板书。

  ①4 和6公有的倍数有:12、24、36

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数 6的倍数

  4 8 16 20 12 24 6 8 30

  4 和6 的公倍数

  (4)抽象、概括。

  ①什么是公倍数、?(让学生说)

  ②指导学生看教材第71页有关公倍数、的概念。

  (5)尝试练习。

  做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  2 18 2 30

  3 9 3 15

  3 5

  18=233

  30=235

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2335)

  (4)归纳:18 和30 的里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:

  2335=90

  (5)教学求的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出了?

  (6)尝试练习。

  做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求的方法。

  ①谁能说说求的方法。

  ②指导学生看第74页求两个数的的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

《最小公倍数》教案6

  教学目标

  1.掌握公倍数、最小公倍数两个概念.

  2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.

  教学重点

  建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.

  教学难点

  理解求两个数最小公倍数的算理.

  教学步骤

  一、铺垫孕伏.

  1.导入:这节课我们开始学习有关最小公倍数的知识.

  (板书:最小公倍数)

  2.复习倍数的概念.

  二、探究新知.

  教学例1

  例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?

  4的倍数有:4、8、12、16、20、24、28、32、36……

  6的倍数有:6、12、18、24、30、36……

  4和6的公倍数有:12、24、36……

  其中最小的一个是12.

  1、学生分组讨论总结公倍数、最小公倍数的意义.

  2、用集合图表示4和6的公倍数.

  3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?

  明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.

  4、反馈练习.

  把6和8的倍数和公倍数不超过50的填在下面的空圈里,再找出它们的最小公倍数是几.

  明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.

  (二)教学例2

  引入:我们用分解质因数的方法求两个数的最小公倍数.

  例2:求18和30的最小公倍数.

  1、用短除式分别把18和30分解质因数.

  板书:18=2×3×3

  30=2×3×5

  教师提问:18的倍数必须包含哪些质因数?

  (18的倍数包含18的所有质因数)

  30的倍数必须包含哪些质因数?

  (30的倍数包含30的所有质因数)

  18和30的公倍数必须包含哪些质因数?

  (既要包含18的所有质因数,又要包含30的`所有质因数)

  2、观察集合图:18和30的最小公倍数应包含哪些质因数?

  教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.

  3、小组讨论:如果少一个或多一个质因数行不行?

  教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.

  板书:

  18和30的最小公倍数是2×3×3×5=90

  4、反馈练习.

  (1)先把下面两个数分解质因数,再求出它们的最小公倍数.

  30=()×()×()

  42=()×()×()

  30和42的最小公倍数是()×()×()×()=()

  (2)A=2×2B=2×2×3

  A和B的最小公倍数是()×()×()=()

  (3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?

  可能错在哪里?

  5、求最小公倍数的一般书写格式.

  ①引导学生把两个短除式合并成一个.

  板书:

  ②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.

  ③反馈练习:求30和45的最小公倍数.

  ④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.

  ⑤反馈练习:求下面每组数的最小公倍数

  6和824和20xx和2116和72

  三、全课小结.

  今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.

  四、随堂练习

  1.填空.

  A=2×2×5

  B=()×5×()

  A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.

  2.判断.

  (1)两个数的积一定是这两个数的公倍数.()

  (2)两个数的积一定是这两个数的最小公倍数.()

  五、布置作业.

  求下面每组数的最小公倍数.

  12和1530和4036和5422和33

《最小公倍数》教案7

  教学目标:

  1、理解公倍数,最小公倍数的意义.

  2、会用列举法,分解质因数,短除法求两个数的最小公倍数.

  3、会求是互质数或有倍数关系的两个数的最小公倍数.

  4、在知识的探究过程中,培养大胆质疑的习惯.

  教学过程:

  一、导入:

  同学们,昨天我们班在舞台旁30米长的花带上每隔2米种一株桂花,树种的太密了,下午要重种,改成每隔3米种一株。现在大家出出主意,下午怎样种才能又快又好的完成任务呢?我一边说一边把课前准备好的图片分给各小组,让各小组讨论交流后交由小组长汇报本组的方案。各组讨论后出现以下三种情况:

  1、全部拔起,重新测量后再种

  2、头尾不动,把中间的全部拔起,重新测量后再种

  3、除头、尾不动外,还有6米、12米、18米、24米共六株不用拔,只需拔10株,在每两株中间种一株,这样重种5株就可以啦。

  师:刚才有4组采用了第三种方案该种的,这种方案确实比前两种方案要好,现在请你们说说是怎么发现这些株数不用重种的?

  生:通过测量的方法发现的`。还发现了6、12不仅是2的倍数同时也是3的倍数,所以觉得是2和3的公倍数就都不用动。

  师:你们怎么想到“公倍数”这么个好听的名字的?

  生:我们前面学习的几个公有的因数叫公因数,最大的叫最大公因数。那现在两个公有倍数就叫公倍数,30是最大的就叫最大公倍数。

  师:大家还有不同的意见吗?

  生:(议论纷纷)这个不是最大的,还有更大的。。。。

  师:确实如此,大家真能干!这节课我们就一起来探究这个问题。(出示课题:公倍数最小公倍数)

  师:谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数.

  二、探究:

  看了这个课题,你想在这节课中了解些什么请学生写在纸上,并贴到黑板上.

  (为什么不求最大公倍数求最小公倍数有哪些方法 哪些情况下可以很快说出两个数的最小公倍数是几 等)

  四人一组合作解决1~2个问题,举例说明,组长笔录.可以翻书请教,在P.69~71.

  成果汇报:

  (1)公倍数有多少个 (公倍数的个数是无限的,没有最大公倍数.)

  (2)求最小公倍数的几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的内容:

  ②分解质因数:如:12与30的最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数 30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积.

  [12,30]=2×3×2×5=60

  从这两个分解质因数的式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公因数 各自独有的质因数

  最小公倍数是两个数的最大公因数与各自独有质因数的乘积.

  ③短除法:如:36和45的最小公倍数

  3 36 45 用公因数去除

  3 12 15

  4 5 除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公因数比较有什么异同之处

  (相同处:都用公因数去除, 除到商是互质数为止.

  不同处:求最大公因数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数.)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数.

  4、总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

《最小公倍数》教案8

  教学内容:教科书五年级上册第81——82页及练习。

  教学目标:

  1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。

  2、了解最小公倍数,学会用短除法求两个数的最小公倍数。

  3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。

  教学重点:学会用短除法求两个数的最小公倍数。

  教学过程:

  一、课前活动——对口令

  师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。

  2、对出一个数,它既是2的倍数也是3的倍数。

  二、创设情境,感知概念

  1、两个数的公倍数和最小公倍数的概念教学

  师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?

  请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。

  师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。

  出示教材上的情境图。

  师:从两个人的对话中了解到哪些数学信息?

  生1:聪聪用了5/6小时。

  生2:红红用3/4小时就打完了。

  师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。

  学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?

  师:谁来说说是怎样比较的?谁打得快呢?

  学生交流,教师进行板书。

  生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。

  5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24

  20/24>18/24,所以5/6>3/4。

  红红打得快。

  生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。

  5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12

  10/12>9/12,所以5/6>3/4。

  ……

  如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。

  师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?

  学生可能有不同的表达方式,概括一下,应有如下回答:

  ●相同的地方

  (1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。

  (2)两种方法通分时用的`分母12和24都是6和4的公倍数。

  教学预设

  ●不同的地方

  (1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。

  (2)24是12的2倍。

  ……

  师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。

  学生自己找,教师巡视。

  师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数

  4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,

  师:如果让你继续找下去,4的倍数还有没有?用什么表示?

  生:还有无数个,用省略号表示。

  生:6的倍数有:6,12,18,24,30,36,42,48,

  师:如果让你继续找下去,6的倍数还有没有?用什么表示?

  生:还有无数个,也用省略号表示。

  生:然后找4和6的公倍数有:12,24,36,48,……。

  教师根据学生的回答出示课件。

  师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?

  学生可能会说:

  生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。

  师:60后面还有没有?还有多少个?

  生:还有无数个,用省略号表示。

  师:有没有最大公倍数?

  生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。

  师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?

  生:12。

  师:还有比12小的公倍数吗?

  生:没有了。

  师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)

  师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。

  学生之间互相交流。

  教师引导学生出概念(出示课件)让学生读一读。

  师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)

  用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。

  板书设计:

《最小公倍数》教案9

  教学内容:

  最小公倍数

  教学目标:

  1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

  2.培养学生的观察能力、分析能力和归纳概括能力。

  3.培养学生良好的学习习惯。

  学习目标:

  1、理解最小公倍数的意义

  2、初步学会求两个数的最小公倍数。

  学习任务:

  任务一 理解最小公倍数的意义

  任务二 求两个数的最小公倍数

  教学过程:

  一、激情导课

  1、师:同学们,看今天我们要学习什么?(最小公倍数)

  看到这个题目,你会想到我们以前学过的什么知识?(倍数)

  2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

  3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的.记住它。

  二、民主导学

  任务一

  一、任务呈现

  师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?

  要求:先独立思考,不会的小组商量。

  提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

  二、自主学习

  教师巡视学习情况

  三、展示交流

  1、师:他们可选那几日外出?(12、24)

  你是怎样选出来的?根据回答板书;

  妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数

  爸爸的休息日:6 12 18 24 30 -----6的倍数。

  共同的休息日:12 24 -----4和6的公倍数

  最近的一天:12------4和6的最小公倍数

  还可以用集合图来表示,

  2、仔细观察两组数据有什么特征?

  3、再次强调 4 的公倍数就是妈妈的休息日

  6 的公倍数就是爸爸的休息日

  4 和6的公倍数就是爸爸和妈妈的共同休息日

  4、最近是哪一天? 12

  12也是这公倍数中最小的一个,叫做最小公倍数。

  5、集合图还可以这样表示 出示课件

  问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)

  你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

  这样我们可以一眼看出4 和6的公倍数是12、24.

  6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

  7、89页做一做

  二、那如何求最小公倍数呢?

  任务二

  求两个数的最小公倍数

  一、任务呈现

  1、求6和8的最小公倍数

  2、想一想

  1.你还能想出几种求法?

  2.公倍数有多少个?你能找出最大的公倍数吗?

  3.两个数的公倍数和最小公倍数之间有什么关系?

  二、自主学习

  三、展示交流

  1、把不同求法板书

  2、交流以上三个问题

  (三)检测导结

  1、目标检测

  求下列每组数的最小公倍数(要求5分钟)

  2和7 4和8

  3和5 6和15

  2、结果反馈

  一次正确5分,自己改正4分,帮助改正3分,

  3、反思总结 谈谈收获和不足

《最小公倍数》教案10

  教学目的:

  1、知识与能力:使学生理解最小公倍数的意义,学会求特殊情况下两个数的最小公倍数。

  2、过程与方法:通过小组合作学习,培养学生的团结协作精神。

  3、情感与态度:提高学生的逻辑思维能力,培养学生科学的思维方法和创新意识。

  教学重点:

  使学生理解最小公倍数的意义。

  教学难点:

  学会求特殊情况下两个数的最小公倍数。

  教具、学具:

  多媒体计算机、课件,练习纸。

  教学过程:

  一、课堂引入:

  你们坐过公共汽车吗?今天老师特意给大家带来个坐车的信息,请看:(电脑显示)

  人民公园是1路和3路汽车的起点站。1路汽车每4分钟发车

  一次,3路汽车每6分钟发车一次。这两路汽车同时发后,至少再过多少分钟又同时发车?

  师:这正是我们今天要研究的内容。

  二、新课:

  1、这节课我们学习,(板书课题):最小公倍数。

  2、看到这课题,你想知道什么?

  3、刚才同学们提的问题很好,就让我们带着这些问题一起学习,请看:

  出示例1:请顺次找出4的倍数和6的倍数。

  师:齐读题目。

  师:好!下面先自己找,找完后小组交流,看谁找得最快、最准确、用的方法最多。请把结果写在练习纸上。

  师:谁来汇报4的倍数和6的倍数有哪些?

  你是怎样找的?

  你们都同意吗?

  师:谁还有不同的找法?

  (电脑同时在数轴上显示:)

  板书:

  4的倍数有:4、8、12、16、20、24、28、32、36......

  6的倍数有:6、12、18、24、30、36......

  师:非常聪明,找倍数的方法有:

  A:原数分别乘以自然数1、2、3、4、5......。

  B:连续加上原数的方法。

  C:在数轴上找倍数的方法。

  你认为那种方法找倍数较快,就用哪种方法找。下面仔细观察4的倍数和6的倍数(指着4和6倍数和数轴),师:你们发现了什么?小组讨论。

  (12、24、36既是4的倍数又是6的倍数)电脑同时把它们变色、闪动。

  师:你们同意吗?

  师:对,12、24、36既是4的倍数又是6的倍数。所以这些数是4和6公有的倍数。

  板书:4和6公有的倍数有:12、24、36......

  师:就这几个吗?能不能把4和6公有的倍数都说出来?为什么?同位互相说说。

  (不能,因为一个数的倍数的个数是无限的,所以它们公有的倍数的个数也是无限的)

  师:个数是无限的。怎样表示呢?(用......,在电脑加上......);

  师:把这句话自由读一遍。

  师:说得好。请观察(显示)这两组数,按这两个思考题,四人小组讨论。

  思考:①、两组数分别是谁的倍数?

  ②、这两组数有没有公有的倍数?如果有,请找出来。

  电脑显示:3、6、9、12、15、18、21、24、27、30......

  5、10、15、20、25、30、35、......

  电脑显示:3的倍数。

  5的倍数。

  (15、30......)变色,闪动。

  板书:3和5公有的倍数有:15、30......

  师:两个数公有的倍数大家都会找,三个数公有的倍数你们会找吗?

  师:请看(电脑显示):

  3的倍数有:3、6、9、12、15、18、21、24、27、30、33、

  36、39......。

  6的倍数有:6、12、18、24、30、36......

  9的倍数有:9、18、27、36、45、54......

  师:请把3、6、9公有的'倍数找出来,找到后请告诉同桌。

  (18、36......)变色,闪动。

  板书:3、6和9公有的倍数有:18、36......

  师:两个数有公有的倍数,三个数也有公有的倍数。这些公有

  的倍数叫什么?其中最小的又叫什么?

  请大家打开课本71页,带着问题自学课本,看课本是怎样说的?

  (公倍数,最小公倍数)

  师:齐读一遍。

  师:刚才我们找出的这些公有的倍数,其实就是它们的公倍数。(电脑显示)

  师:同桌找出这三组的最小公倍数各是几?(12、15、18闪动、变色)

  师:这些最小公倍数你是怎样找的?

  板书:倍数→公倍数→最小公倍数

  教师小结上面找倍数的方法,加深印象。

  师:谁还有不同的方法?

  师:几个数有最小的公倍数,有没有最大的公倍数?为什么?

  (一个数的倍数是无限的,因此几个数的公倍数也是无限的,所以没有最大的公倍数)

  师:我们已学过用图表示一个数的倍数,同样也可以用图来表示几个数的倍数和公倍数,请看电脑:

  4的倍数6的倍数4的倍数6的倍数

  4和6的公倍数

  引导:(指图)12、24、36这些数既在这圈(4的倍数),又在那圈

  (6的倍数),所以这些是公倍数。

  回应:刚才那道题(显示),你有正确的答案吗?为什么?

  (因为12是4和6的最小公倍数)

  质疑:刚才学习了找最小公倍数,其实你们提出的问题已经解决了,还有什么不明白的地方?

  过渡:刚才学习得很好,下面我们根据这三个思考题(显示),四

  人小组讨论,完成这些题目,完成后小组交流一下,你发现

  了什么?

  思考:

  ①、找出下面各组数的最小公倍数。

  ②、你是用什么方法找最小公倍数的?

  ③、通过找最小公倍数,你发现了什么?

  1、1)、2和4的最小公倍数是

  2)、8和4的最小公倍数是

  3)、12和36的最小倍数是

  2、1)、2和3的最小公倍数是

  2)、4和5的最小公倍数是

  3)、3和7的最小公倍数是

  师:谁来回答第一个思考题?

  师:你是用什么方法找的?

  师:你发现了什么?

  板书:贴出规律。

  师:齐读一遍。

  游戏:刚才我们学习了两组特殊数找最小公倍数的方法,下面我们

  就用这个知识来玩一个游戏。

  1)、老师出一组数,你们找出他们的最小公倍数,看哪个同学反应最快?(卡片:2和5、3和6)

  2)、同学们反应真快,同桌之间也来玩。一人出题,一人出答案,相互进行。

  师:这个游戏下课后可以继续玩,也可以和家人一起玩;这个知识在生活中也应用很广,请看:

  从今天开始,小明的妈妈每工作2天休息一天,爸爸每工作3天也休息一天,爸爸、妈妈第一次同时休息要经过几天?(12天)

  师:你是怎样想的?

  师:谁还有不同的想法?

  师:同意6的请举手,同意12的请举手。

  师:究竟是6还是12呢?大家讨论。

  师:请看电脑老师。

  出示辅助图:

  代表工作,代表休息。

  爸爸:

  妈妈:

  师:那个对呢?为什么?

  三、社会调查,渗透思想教育:

  在日常生活和学习中,你发现还有哪些有应用最小公倍数的?

  四、课堂小结:

  今天你学习到什么知识?

  五、布置作业:

  1、预习例2。

  2、第75页第3、7题。

  板书设计:

  最小公倍数

  倍数→公倍数→最小公倍数

  如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

《最小公倍数》教案11

  设计说明

  1.充分利用教材中的素材创设情境,让学生在情境中解决问题。

  结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。

  2.放手让学生自主探究,获取新知。

  著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。

  课前准备

  教师准备 PPT课件

  学生准备 若干张长3 dm、宽2 dm的卡片

  教学过程

  ⊙创设情境,引入新课

  1.引导学生回忆。

  师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。

  2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?

  设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。

  ⊙小组合作,解决问题

  1.拼一拼。

  (1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。

  (2)在印有格子的纸上画出拼成的正方形。边操作边思考:正方形的`边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?

  2.说发现。

  师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)

  3.解决问题。

  师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)

  4.回顾解决“铺墙砖”问题的关键。

  把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。

  ⊙学习公倍数的应用

  1.解决教材72页11题。

  爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]

  2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。

  预设

  生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?

  (3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)

  生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?

  (4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)

  生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?

《最小公倍数》教案12

  教学内容:

  苏教版义务教育教科书《数学>五年级下册第43~44页例1 1、例1 2和“练一练’’,第46练习七第9~10题。

  教学目标:

  1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。

  2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。

  教学重点:

  求两个数的公倍数和最小公倍数。

  教学难点:

  理解求公倍数和最小公倍数的方法。

  教学准备:

  小黑板

  教学过程:

  一、揭示课题

  揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)

  提问:看了这个课题,你有什么想法? 你对公倍数有哪些想法?对最小公倍数呢?

  引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)

  二、学习新知

  1.认识公倍数。

  (1)出示例11,让学生说说知道了些什么,提出的什么问题。

  引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?

  交流:哪个正方形能正好铺满,哪个不能铺满?

  提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?

  说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。

  (2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。

  交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米的正方形)

  你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满? 像这样能被正好铺满的正方形有多少个,能找得完吗?

  (3) 引导:现在你发现,6、12、18、24这些数和2、3都有什么关系?说说你的想法。 指出:同学们的理解还真不错!大家发现6、12、18、24这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)

  追问:8是2和3的公倍数吗?为什么不是?

  那哪些数是2和3的公倍数呢?(板书:6,12 ,18,24是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?

  2.求公倍数。

  出示例12,明确要找6和9的公倍数和最小的公倍数。

  让学生独立找出6和9的公倍数和最小的公倍数,与同桌交流自己的 方法。 交流:你是怎样找出6和9的公倍数和最小的公倍数的?

  结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。

  小结:大家用不同的方法找出了6和9的公倍数有18,36,54其中’最小的是18。 18是6和9的最小公倍数。

  追问:有没有最大的公倍数?为什么?

  说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的.一个)

  3.用集合图表示公倍数。

  引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。 学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。

  让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。

  指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。

  三、巩固深化

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习七第9题。

  4.做练习七第10题。

  四、总结提升

  引导:今今天学习的是什么内容?什么是两个数的公倍数和最小公倍数? 可以怎样找两个数的公倍数和最小公倍数?写公倍数时要注意什么?

《最小公倍数》教案13

  关键词:观察、分析、猜测、推理、验证与交流;自主探索、合作交流

  内容:九年义务教育六年制小学教科书第十册P67-73求特殊情况下两个数的最大公约数和最小公倍数。

  课堂实录:

  一、复习:

  1、求两个数的最大公约数和最小公倍数的方法各是什么?

  2、求出每组数的最大公约数和最小公倍数(用短除法)

  20和2436和5428和1413和40

  [评析:复习用短除法求每组数的最大公约数和最小公倍数,体现了教学新旧知识的联系,又体现了知识的循序渐进。]

  二、导入新课:

  前面我们学习了用短除法来求两个数的最大公约数和最小公倍数,那么是不

  是对所有求两个数的最大公约数和最小公倍数的题都要用短除法呢?这就是我们本节课所要研究的内容————求特殊情况下两个数的最大公约数和最小公倍数(板书课题)。

  [评析:学源于思,思源于疑,人类思维活动往往是由于解决当前面临的问题而引发的。因此,设置疑问导入新课,能激发学生的好奇心,引起学生的求知欲,开拓学生的思路,使学生兴趣盎然地去探求知识。]

  三、新授:

  1、电脑出示下面几组数,让学生判断每组数成什么关系?

  7和218和912和3614和19

  生:7和21,12和36,成倍数关系;8和9,14和19成互质关系。

  师:那么成互质关系或倍数关系的两个数的最大公约数和最小公倍数不用短

  除法大家能很快求出来吗?

  生:能

  生:不能

  生:能

  师:下面我们共同来研究一下,看哪些同学说的对。

  师:请分别找出8,9的约数和倍数。韩晓斌严春花

  学生回答完后电脑出示:

  8的约数:1,2,4,8

  9的约数:1,3,9

  8的倍数:8,16,24,32,40,48,56,64,72,80,88,96……

  9的倍数:9,18,27,36,45,54,63,72,81……

  师:请同学们先找出8和9的最大公约数,再找出它们的最小公倍数。

  生:8和9的最大公约数是1。

  生:8和9的最小公倍数是72。

  师:请同学们再观察8,9,72这三个数之间有什么关系?

  生:8和9都是72的约数。

  生:72是8的倍数,也是9的倍数。

  生:8×9=72,即:72是8和9的乘积。

  师:大家都说得对,但是,有一位同学观察得更仔细,思考得更认真,他发现72是8和9的乘积,而72是8和9的最小公倍数,也就是说8和9的最小公倍数是它们的什么?

  生:8和9的最小公倍数是它们的乘积。

  师:又因为8和9成互质关系,那么我们从中能得出什么呢?

  生:成互质关系的两个数的最小公倍数是它们的乘积。

  师:那么是不是所有成互质关系的两个数的最小公倍数都是它们的乘积呢?

  师:写出几组成互质关系的两个数,让学生自己去验证(师边巡视边低声指导)。

  例如:7和94和53和5

  最后讨论得出:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  师:我们还知道8和9的最大公约数是1,下面请同学们联系前面那个结论的推导过程,想一想,然后分组讨论,看从这句话中能得到什么?

  生:成互质关系的两个数的最大公约数是1。

  同样让学生自己验证,最后讨论得出:

  如果两个数是互质数,它们的最大公约数就是1。

  2、请同学们分别找出7、21的约数和倍数。

  学生回答完后电脑出示:

  7的约数:1,7

  21的约数:1,3,7,21

  7的倍数:7,14,21,28,35,42……

  21的倍数:21,42,63……

  师:下面请同学们先找出7和21的最大公约数,再找出它们的最小公倍数。

  生:7和21的最大公约数是7。

  生:7和21的最小公倍数是21。

  师:请同学们观察7和21的最大公约数和最小公倍数,再和原数进行对照,

  想一想,有什么规律?

  生:7和21的最大公约数和最小公倍数就是这两个数。

  生:7和21的最大公约数和最小公倍数分别是这两个数当中的一个。

  生:7和21的最大公约数和最小公倍数与这两个数有关系,即:7和21的最大公约数是这两个数中的较小数7,它们的最小公倍数是这两个数中的较大数21。

  对

  生:因为7和21成倍数关系,所以,成倍数关系的两个数的最大公约数是这两个数中的较小数,它们的最小公倍数是这两个数中的较大数。

  生:求成倍数关系的两个数的最大公约数和最小公倍数时,大小,

  对

  小大。

  这时,学生们的思维都非常活跃,而且回答的内容逐渐趋向完整、准确,此时,教师让学生们根据以上同学的回答,看哪个更加完整、准确,如何概括成一句简练的话?

  这样,经过学生们的分组讨论,轻而易举的就得出了结论:如果两个数成倍数关系,那么它们的最大公约数就是两个数中的较小数;它们的最小公倍数就是两个数中的较大数。

  同时,让学生自己举例验证得出的结论是否正确。

  最后让学生打开课本,阅读完书上的结论后进行比较,看与自己总结的是否一样,进而分享由自己的劳动成果所带来的喜悦。

  [评析:以学生的观察、分析、猜测、推理、验证与交流为认知结构,把抽象的数学知识具体化,从而激发了学生的求知欲和学习情趣。通过学生自主探索合作交流,真正理解和掌握了求特殊情况下两个数的最大公约数和最小公倍数的方法,同时获得了更为广泛的数学活动经验。]

  四、反馈练习:

  很快说出每组数的`最大公约数和最小公倍数。

  9和367和1329和3013和5236和725和17

  [评析:通过反馈练习,不仅能锻炼学生的观察、思维、判断、表达等能力,而且无形当中也就提高了学生运用所学的数学知识和方法解决一些简单问题的能力。]

  五、总结:

  你有什么感想和收获?

  [评析:总结的设计,是本课教学的升华。在此,教师给学生提供了一个充分动脑、动口、表现自我的平台,不仅是所学知识的反馈,更是有效地促进数学课中学生口语表达的训练。]

  六、作业:(略)

  教学反思:

  数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有利于学生自主学习、合作交流的情境,使学生通过观察、分析、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣。所以,我在教学“求特殊情况下两个数的最大公约数和最小公倍数”这一课时,充分发挥了学生的主体作用,促使学生自主探索、合作交流,挖掘学生的思维潜能,培养学生的观察、分析、归纳、猜测、推理、交流能力,真正让学生学会思考,学会学习。

  学习任何知识的最佳途径是由自己去发现,因为这种发现最容易被理解,也最容易被掌握。因此,整堂课我始终以学生的活动为主,让学生自己去发现其中的规律和联系,我只是适当点拨、引导而已。显然,课堂气氛非常活跃,学生在快乐的气氛中轻松地学到了知识,发展了能力,同时也获得了成功的体验。

  反思本课教学,最大的启示是:在数学课堂教学中,只要我们转变教学观念,以学生为主体,充分调动学生的学习积极性,使之主动参与到学习过程中,就能提高课堂教学效率,使人人有所得,个个有收获。

  教学需改进之处———进一步处理好师生之间“教”与“学”的互动关系,充分发挥教师的“主导性”和学生的“主体性”作用,彻底改变习以为常的传统教学观念,为培养出数量多、素质高、能力强的跨世纪人才拼搏奋进!

《最小公倍数》教案14

  教学目标

  1.使学生掌握求两个数的最小公倍数的两种特殊情况,能正确、合理地求两个数的最小公倍数。

  重点难点

  求两个数的最小公倍数的两种特殊情况。

  主要教学方法

  新授课谈话法讨论法

  操作过程

  求12和36的最小公倍数求9和5的最小公倍数

  〔12,36〕=2×2×3×1×3=36〔9,5〕=9×5=45

  如果大数是小数的倍数,那么大如果两个数是互质数,数就是这两个数的最小公倍数。那么这两个数就是它们的最小公倍数。

  教师活动:预计时间()分钟

  学生活动;预计时间()分钟

  一.复习准备×

  1.填空。

  (84)=2×2×3×7

  (70)=2×5×7

  ()和()的最小公倍数是:

  (2×2×3×5×7=420)

  两个数的最小公倍数是两个数()各自()的积。

  2.说出用短除法求两个数的最小公倍数的步骤。

  3.用短除法求45和60,12和36,9和5的最小公倍数。

  二.教学新课

  1.两个数是倍数关系。

  12和36的最小公倍数是36。

  说出下面各组数的最小公倍数。

  17和5118和10815和225

  2.两个数是互质数

  如9和5是互质数,它们的最小公倍数是45。

  说出下面各组数的最小公倍数。

  8和913和178和72

  3.练一练第3题

  三.介绍求最小公倍数的一种简便方法--大数翻倍法。

  四.巩固练习。

  1.填空

  (1)如果a能被b整除,a和b的最大公约数是(b),最小公倍数是(a)。

  (2)如果a和b是互质数,a和b的`最大公约数是1,最小公倍数是(a×b)

  2.练一练第4题

  五.小结:求两个数的最小公倍数,要认真看清题目,选用合理的方法。

  六.作业:目标与检测第68页

  1.学生口答

  2.连起来说一说

  1.指名说

  3.同桌互说

  指名板演,其余自练。

  1.观察这组数:12和36有什么关系?

  2.归纳:如果大数是小数的倍数,那么大数就是这两个数的最小公倍数。

  1.观察这组数,从这里你发现了什么?

  2.归纳:如果两个数是互质数,那么

  这两个数的积就是它们的最小公倍数。

  3.学生口答

  先填空,再连起来说一说。

  延伸练习

  反馈与矫正

  目标达成情况

《最小公倍数》教案15

  一、教学内容 :

  课本 P88~90 例 1、例 2。

  二、教学目标

  1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

  2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

  3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

  三、重点难点:

  求两个数最小公倍数的方法。

  四、教学设计

  (一)、小组长汇报“前置小研究”完成情况

  怎样求3和2的最小公倍数?

  第一步:3的倍数有:()

  2的倍数有:()

  第二步:3和2的公倍数有:( )

  第三步:3和2的最小公倍数是:()

  (二)、小组交流、探讨“前置小研究”

  1、 要求小组内互相解决出现的错误,并能说说自己的方法;

  2、要求学生说说:

  (1)什么是公倍数和最小公倍数?

  (2)两个数的公倍数的个数是怎样的?

  (三)引课:今天我们就来探究最小公倍数(板书课题)

  1、出示书P88例1题

  一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形 (用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?

  (1)、学生进行讨论:

  (2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画

  (3)、学生反馈:这个正方形的边长必须既是 3 的倍数,又是 2 的倍数。

  (4)、还可以怎样表示求3和2的最小公倍数?

  ①求3和2的最小公倍数,还可以用用集合圈的方法表示 ②全班交流并板书。

  可以铺出边长是 6 dm,12 dm,18 dm,··· 的'正方形,最小的正方形边长是 6 dm。

  3的倍数 2的倍数

  6, 6 是最小的公倍数,叫做它们的最小公倍数。

  2、考考你:用新学的知识解决问题:完成P89做一做

  3、教学例2:怎样求 6 和 8 的最小公倍数?

  (1)学生独立完成,全班交流。

  (2)学生交流方法有(交流时课件演示)

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。 例如:6 的倍数:6,12,18,24,30,36,42,48,?

  8 的倍数:8,16,24,32,40,48,?

  6 和 8 公倍数:24,48,?

  6 和 8 的最小公倍数:24

  ②用图表示也很清楚。

  ③6 的倍数中有哪些是 8 的倍数呢?

  你还有其他方法吗?和同学讨论一下。

  教师介绍:①大数翻倍法:8,16,24,?6 和 8 的最小公倍数:24 ②分解质因数法:

  数的乘积。

  4、通过观察,想一想:①两个数的公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?

  5、考考你会求两个数的最小公倍数吗?

  完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现? 3 和 6 2 和 8 5和 6 4 和 9

  6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  7、我能很快说出每组数的最小公倍数。

  8和9() 24和8 () 30和5( ) 4和12() 36和4()48和6 () 17和13() 14和15() 23和24( )

  (四)巩固练习 :书P91第1题。

  (五)全课总结:通过这节课的学习,你有什么收获?

  板书设计 最小公倍数

  公倍数:两个数公有的倍数

  最小公倍数:两个数公有的倍数中最小的那个数 找“最小公倍数”的方法:

  个数的公倍数中找出两个数的最小公倍数

  2、特殊情况:

  ①当两数成倍数关系时,这两个数的最小公倍数就是较大的数; ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。

【《最小公倍数》教案】相关文章:

《最小公倍数》教案07-09

最小公倍数教案04-13

最小公倍数教案10-01

《最小公倍数》教案10-17

公倍数与最小公倍数教案10-17

找最小公倍数教学教案04-22

【实用】《最小公倍数》教案4篇09-11

《最小公倍数》教案合集五篇10-07

【精品】《最小公倍数》教案三篇07-16